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Abstract

At a glance, data is more meaningful when presented in graphical form. This project explored

innovative methods of automating the display of catch data for large-scale conservation projects.

High priority was given to developing methods that allow users to interact with their data, affording

them some control over the graphics that are produced. Two interactive applications were developed

that allow conservation volunteers to select the data they want to view and how to view it. After

a day in the field, volunteers are able to use these applications to see their day’s work summarised

on a map or graphic. These graphics highlight the positive impact their efforts are having on the

local environment, keeping volunteers motivated and engaged in their work. Various methods of

improving the automation of these graphics are outlined, as well as other practical uses of these

statistical applications.
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1 Introduction

This honours project concerns the display and analysis of catch data from various large-scale animal

trapping programmes in New Zealand. The primary aim of these programmes is to eradicate

common pests found in New Zealand environments, such as rats, weasels, stoats and possums. The

work conservation volunteers contribute to the country’s environment is invaluable, helping protect

our native bush and native species, such as the kiwi. Exploring ways and means of keeping these

volunteers motivated in their work, as well as encouraging new volunteers to get involved, is crucial

to encouraging community involvement in these programmes.

Recording conservation data allows communities to quantify the positive impact of pest eradi-

cation programmes on their local environments. However, for volunteers affiliated with such pro-

grammes, it can be difficult to ascertain the impact of their work using just facts and figures.

This same issue arises when trying to inform an interested member of the public inquiring about

a project. Is trapping 100 rats in the last year a great success? Is trapping 20 fewer stoats this

month compared to last a noticeable decline?

A more effective method of presenting conservation data is to use attractive and informative

graphics. Finding innovative, visual means of presenting data does the job of both informing

the public of the impact of local projects, and providing motivation for conservation volunteers

to continue their work. However, interpreting and displaying this data requires computing and

statistical knowledge that the everyday conservation volunteer might not possess.

As statisticians we are able to provide solutions to these issues, but is time consuming to

produce graphics for every potentially interesting pattern present in the vast quantities of data

being recorded. The main focus of this project was therefore to explore automated methods of

providing conservation volunteers with the ability to produce informative graphics themselves,

without coming into direct contact with computer code or statistical jargon.

The solution was to develop two interactive applications to produce automated graphics. The

first produces a variety of customisable bar charts and the second a selection of heat maps. Both

applications allow individual users to choose how they wish to view their data and require only

web browsers to access.
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1.1 Report structure

Chapter 2 outlines the format and structure of the data and the benefits of automating graphic

production. Chapter 3 details the software used to create graphics, as well as several of the com-

putational challenges to overcome.

Chapter 4 provides an overview of the bar chart application and describes some of the complex-

ities, while Chapter 5 illustrates a practical use of this application in the form of a bait comparison

trial.

Chapter 6 provides an overview of the heat map application and describes several of the viewing

options available. Finally, Chapter 7 details the methodology behind the production of the heat

maps, and the difficulties encountered when automating this process.

6



2 Data and CatchIT

This project is concerned with animal catch data from various conservation programmes around

New Zealand. The data are obtained from CatchIT, an online data management program for

conservation pest-control projects. Catch data are stored in easy-to-read tables that can be down-

loaded anytime (CatchIT (2011), https://www.stat.auckland.ac.nz/˜fewster/CatchIT/). A variety

of information about each catch is available, such as the date, species caught, the specific trap type

and bait used, and the person who recorded the catch.

2.1 Format of data

Catch data are recorded by park rangers and volunteers who then upload their records to CatchIT.

Every conservation project registered with CatchIT has a master CSV file which is added to each

time an upload for that specific project is made. Thus, up-to-date records of any project’s all-time

data are always available in the format of a CSV file (Figure 1).

Figure 1. Example of a CatchIT.csv file

Having data in this format is advantageous as it is structured to have one catch record per row

and uses columns for each of the variables such as date, species, bait, et cetera. This makes it

highly compatible with statistical software such as R, allowing for easy data handling and analysis.

An example of the benefits of storing data in CatchIT can be seen with the Te Henga project in

the Waitakere Ranges, West Auckland. Previous to joining CatchIT, the Te Henga project stored

data in text documents such as the one shown in Figure 2.
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Figure 2. Example of Te Henga data prior to storage in CatchIT

Data in this format is clearly difficult to interpret, let alone analyse using statistical software. To

summarise the data, manual counts are required, which are time consuming and often inaccurate.

Therefore, a benefit of CatchIT storing data in a consistent format is that any R code used to

produce graphics and analyses for one project can ideally be applied to other projects, without any

change to the code. This greatly increases our efficiency as statisticians, giving us more time to

focus on other areas of a project.

While at face value this sounds relatively straightforward, a great deal of effort is required at

the programming stage to ensure that the selected data set will produce relevant and attractive

graphics. The code has to account for any combination of missing or extreme values to ensure

that the resulting plots are attractive and display the appropriate information. This might require

computations to be designed and applied to the data set to ensure that the default parameters

produce sensible graphics and analyses for each CatchIT project.
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2.2 Applications for CatchIT data

The initial aim of the project was to explore interesting methods of presenting and analysing catch

data from large-scale animal trapping programmes in New Zealand. Given the vast quantities

of data these conservation projects are recording, it can be difficult to effectively present data

in an interesting manner that is still easily interpretable to the everyday conservation volunteer.

Conventional, simple methods of displaying data (for example static plots), while informative, might

fail to grasp the attention of a viewer. Therefore a main focus was to develop methods of viewing

data that are stimulating, while being easy to interpret, as the users of these graphics and analyses

will vary greatly in their statistical and computing knowledge.

The idea behind this aim is that after a volunteer comes home after a day in the field, they are

able to go online and see their day’s work presented on a map or graphic, highlighting their own

individual contribution to their project. Most people would find data that is presented graphically

not only more interesting than staring at a table of numbers, but also more informative. Ideally,

seeing customised personal data will keep volunteers motivated, and it illustrates exactly how their

own work is impacting their local community.

In the past, when writing reports for local councils and funding bodies, project leaders would

either produce graphics themselves, or not at all. Therefore, by automating the production of

graphics, we as statisticians bring a lot to the table in terms of value to these projects. Enabling

easy access to summary graphics and analyses eliminates the need for volunteers to have any

statistical programming knowledge as well as giving peace of mind that their data have been

handled correctly.

Therefore, the graphics and analyses must strike a balance between: interesting but complex

and simple but boring. The solution was to develop interactive applications which display simple,

informative graphics, but are entirely user controlled. These are interactive in the sense that the

user has the ability to decide exactly which elements of the data they wish to view, and how they

want to view them. Given the many different categories of data stored in CatchIT, this allows users

to choose the graphics to display the aspects of the project they are particularly interested in.

Using R (version 3.2.2) and R Shiny, I have developed two interactive applications. The first

creates bar charts that display catch data for any selected combination of categories. This may

range from simply viewing total catch numbers for each species, to the number of stoats caught

using peanut butter in 2015 by a specific volunteer. The second application generates heat maps
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that show ‘hotspots’ of catches on a Google map of a selected conservation project. These maps

can be customised to only show the catches for a specific species or specific volunteer. Essentially,

the applications bring the data to life, giving the user complete freedom to explore their project by

providing numerous permutations of viewing options.
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3 R Shiny

R Shiny is a web application framework for R that allows users to turn analyses into applications

with interactive interfaces that can be accessed via the internet (RStudio, Inc, 2013). Such appli-

cations can be created to bring data and analyses to life by allowing individual users to select what

they want to view, and how they want to view it. An application will usually consist of a variety

of selection options, with different combinations of selections resulting in different outputs. Entire

applications can be coded using the R language, though HTML, JavaScript and CSS languages are

supported.

3.1 Overview

An R Shiny application consists of two components; a user interface (UI) and server. The UI is

what the user sees on screen, and consists of ‘inputs’ such as the various selection options, and

‘outputs’ that are R-generated analyses and graphics. The server is what links the UI with R. This

is done by running specified R code when a certain input is selected in the UI and returning the

result as an ‘output’, viewable in the UI.

Figure 3. Example R Shiny user interface

Figure 3 gives an example UI with numerous inputs in the forms of the various selection options.

Users are able to select which area, species, people, lines and dates they wish to view catch data

for. The application will then take the selected inputs and return the appropriate analysis based

on these selections.

3.2 The user interface

The UI is one of R Shiny’s most unique features. It allows an interactive interface to send R syntax

to the console via the server code, rather than running code from a script file. Thus, assuming the
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server code has been correctly set up, a user has access to R code with complex options, without

ever coming into direct contact with R syntax. This is particularly useful in the present case, as

many volunteers linked with CatchIT projects will have little to no familiarity with R, yet will be

able to produce R-graphics.

One of our main goals is to allow users to directly interact with the data, without having to do

any computing themselves. The UI is our first step towards achieving this. Coding an interface that

is tailored to the graphics we wish to produce provides users with an unintimidating computing

environment to explore the elements of the data they are most interested in. A typical UI contains

a number of ‘inputs’ that can be chosen from a variety of selection tools, such as dropdown menus,

checkboxes and action buttons.

The following is a simple example of the difference between running code directly through the

R console, and through a UI. Say we wish to simulate and plot a number of observations from a

standard normal distribution. In R, this is as simple as:

## Simulate and plot 100 observations from a standard normal

hist(rnorm(100), main = paste("Histogram of 100 observations"), xlab = "x")

Histogram of 100 observations
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However, we can produce the same result by building a user interface in R Shiny whereby the

user can generate the plot themselves through a web browser window. The user is presented with a

slider bar to select the number of observations they wish to plot, and the application automatically

produces the appropriate plot:
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Figure 4. R Shiny histogram interface

Therefore, we have created a simple application where we have effected all the coding for the

user, but all they see is a slider and a plot. This gives the user the ability to run R code without

having to do any coding themselves.

3.3 Reactive environment

While the UI allows R code to be executed by clicking buttons, what makes programming in R

Shiny discernibly different from R is that it allows for coding in a reactive environment. This

implies that an application will undergo some sort of reaction in response to an ‘event’. An event

relates to the changing of an input and can take various forms, such as clicking a specific button, or

changing a selection. Thus, as a user changes a particular input, the output will adapt accordingly,

giving the user greatly increased flexibility in how they wish to analyse and view data.

Reactivity is primarily coded within the server function of the R Shiny code. Any output

that is displayed within the UI can take a dependency on a reactive input value by making the

appropriate call to input$. Therefore, changing a particular input causes the output to react and

adapt accordingly.

In the example in Figure 4 above, the object input$number is a reactive input in the sense that

it reacts to match the value selected by the slider. Consequently, the histogram is a reactive output

as it takes a dependency on the value of input$number. Once the user has made a selection, R

reacts accordingly by updating the value of input$number, which in turn causes the output to

react and produce the appropriate histogram.

13



## Figure 4 code

## Function creating user interface

ui <- fluidPage(

sidebarLayout(

sidebarPanel(

## Creates the slider selecting the number of observations

## The value specifies the default value when the app first loads

sliderInput("number", label = "Number of observations:", min = 10, max

= 500, value = 100)

),

mainPanel(plotOutput("distPlot"))

)

)

## Server function linking R with the user interface

server <- function(input, output) {

## Plots a histogram where input£number = the selection of the slider

output$distPlot <- renderPlot({

hist(rnorm(input$number), main = paste("Histogram of", input$number,

"observations"), xlab = "x")

})

}

shinyApp(ui = ui, server = server)

This reiterates the earlier point that a user is able to run R code without realising, and without

being overwhelmed by confusing computing jargon. We can extend this idea of using a reactive

environment to producing graphics for the catch data stored in CatchIT. If we code our server

function carefully, we can be confident that the various inputs will work regardless of which project’s

data we are viewing, as all projects are stored in an identical format.

14



3.4 Useful functions for programming in R Shiny

3.4.1 The renderUI function

While allowing for improved interactivity and flexibility, programming in R Shiny’s reactive envi-

ronment presents some challenges to overcome. The application in Figure 4 illustrates an example

of how a reactive value can change an output. However, should we want the interface itself to

change dependent on the user’s selections, R Shiny allows for the creation of dynamic UIs through

the use of the renderUI function. That is, as a user changes various selections, this alters how

inputs are presented within the UI.

To build on the simple application in Figure 4, we might want to include options for the user

to select the mean and standard deviation for the distribution of the observed values. Further, we

might wish to constrain the distribution such that the default mean is twice the standard deviation.

Using the renderUI function, we can ensure that whenever the input for standard deviation is

changed, the value for the mean seen on the UI changes accordingly to fulfil the constraint.

## UI code

ui <- fluidPage(

sidebarLayout(

sidebarPanel(

sliderInput("number", label = "Number of observations:", min = 10, max

= 500, value = 100),

## The selection for mean as a dynamic input

uiOutput("mean"),

## The selection for standard deviation as a static input

numericInput("sdev", label = "Select standard deviation:", value = 1)

),

mainPanel(plotOutput("distPlot"))

)

)

## Server code

server <- function(input, output){

output$distPlot <- renderPlot({
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hist(rnorm(input$number, input$mean, input$sdev), main = paste("Histogram

of", input$number, "observations"), xlab = "x")

})

## The mean as a dynamically changing input, relying on value of std.dev

output$mean <- renderUI({

numericInput("mean", label = "Select mean:", value = 2*input$sdev)

})

}

shinyApp(ui = ui, server = server)

(a) Mean = 1, Standard Deviation = 2

(b) Mean = 5, Standard Deviation = 10

Figure 5. The mean automatically defaults to twice the selected standard deviation

The example in Figure 5 also demonstrates another interesting feature that distinguishes R

Shiny from R. Unlike R, code in R Shiny is not strictly run in a hierarchical order from top to

bottom. Due to the reactive environment, there may be objects defined near the beginning of the
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code that depend on values of objects defined later in the code, and vice versa. Applications can

quickly develop such that objects have a complex web of dependencies on one another.

In Figure 5, the plot is created within the output$distPlot code chunk, taking the arguments

input$number, input$mean and input$sdev. However, the value for inupt$mean is defined in

output$mean, which is defined after the plot function is called. In R, this would normally give an

‘object not found’ error, as it would attempt to run hist(rnorm(input$number, input$mean,

input$sdev)), before input$mean is defined. However, R Shiny recognises that in order to generate

the plot, input$mean is required, thus the chunk output$mean is executed first.

These considerations mean that R Shiny code does not always execute in the order in which it

is written, and at times the execution order can be difficult to anticipate. Code chunks updating

out of order, while often not fatal to the application, can cause some fairly unusual problems. An

example is outlined in the bar chart application in Section 4.2.2, where bar chart titles update

before the graphic itself, briefly showing the wrong data below the correct title.

3.4.2 The isolate and observeEvent functions

Suppose we now have an output that depends on multiple reactive values. Due to the reactivity

of our inputs, the output constantly updates itself whenever we change any of the inputs. Though

not seen in these static images, whenever an application updates itself in R Shiny, a brief flash can

be seen as a new plot is generated. This continual flashing is quite unpleasant, and may become

confusing as a user scrolls through input values. Instead, we might prefer the application to update

itself only when the user is satisfied with the input selections. This can be achieved using the

isolate and observeEvent functions.

When the isolate function encloses an expression, this tells R Shiny that the expression should

not take a dependency on any reactive objects inside of it. As a result, the expression will not

automatically update itself every time the value of a reactive object it depends on changes. In the

case of the application in Figure 5, we do not want the histogram to continually update itself until

the user is happy with their selections for input$number, input$mean and input$sdev.

## UI code same as for Figure 5: omitted here

## Server code

server <- function(input, output) {

output$mean <- renderUI({
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numericInput("mean", label = "Select mean:", value = 2*input$sdev)

})

## The plot with all reactive dependency removed

output$distPlot <- renderPlot({

isolate(hist(rnorm(input$number, input$mean, input$sdev), main = paste

("Histogram of", input$number, "observations"), xlab = "x"))

})

}

Enclosing the histogram expression within output$distPlot with isolate prevents the his-

togram from updating itself each time the user changes the value of one of the three reactive objects.

However, now the histogram will never update as we have removed all dependency on the reactive

objects it takes as arguments. Using the observeEvent function, we can tell the isolated expression

to update itself when, and only when, a defined ‘event’ occurs.

An ‘event’ can take one of many forms. In this example, an action button has been added for

users to click when they are satisfied with their selections. Clicking this button will trigger the

event input$simulate, and tells the histogram to update itself to match the present selections.

## UI code

ui <- fluidPage(

sidebarLayout(

sidebarPanel(

sliderInput("number", label = "Number of observations:", min = 10, max =

500, value = 100),

uiOutput("mean"),

numericInput("sdev", label = "Select standard deviation:", value = 1),

## The action button in the user interface

actionButton("simulate", label = "Simulate Observations!")

),

mainPanel(plotOutput("distPlot"))

)

)
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## Server code

server <- function(input, output) {

output$mean <- renderUI({

numericInput("mean", label = "Select mean:", value = 2*input$sdev)

})

## The plot only updates when input£simulate is observed

## (i.e. clicking the action button)

observeEvent(input$simulate, {

output$distPlot <- renderPlot({

isolate(hist(rnorm(input$number, input$mean, input$sdev), main = paste

("Histogram of", input$number, "observations"), xlab = "x"))

})

})

}

shinyApp(ui = ui, server = server)

Figure 6. Clicking ‘Simulate Observations!’ updates the histogram

Because the graphics and analyses for larger projects can take up to a few seconds to load and

display, use of the isolate and observeEvent functions is very important to prevent applications

from automatically updating when a selection is changed. Allowing an application to continually re-

compute graphics quickly becomes computationally expensive, greatly reducing the user experience

which is one of the major benefits of using R Shiny in the first place.

This simple application demonstrates several important R Shiny functions that are used fre-

quently in the applications detailed in Chapters 5 and 7.
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4 Bar chart application

The bar chart application gives users the ability to view catch numbers for any project, which can

be colour coded by a range of variables. The user can also choose to display catch numbers for

individual selections of a variable, such as a plot for each volunteer, or a plot for each species. The

default setting displays an ‘overall’ bar chart depicting the total number of catches for each species

in the current year, as well as individual bar charts for each volunteer’s catch data broken down by

species for that year.

Figure 7. Example bar chart application interface. The top plot depicts the overall information for

the area, while the following plots are the individual plots
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The interface in Figure 7 gives an example of the output a user would be presented with

using the default settings for the Okura Bush project. Section 4.1 below gives an overview of

the application. Code excerpts are included to illustrate the complexity of coding in such general

terms, while also outlining the web of interdependancies between inputs within the interface. Also

included are examples of code excerpts that are are dedicated to exhibiting the level of attention

to detail required—such as, how to deal with users who have identical names, ensuring legends are

of reasonable size, and automating the colour selections to ensure graphics are attractive and easy

to read.

4.1 Overview and walk-through

The application presents users with a number of selection options, allowing them to customise the

bar charts to cater to their personal preferences. Firstly, a user must select (i) an area (project),

(ii) how they wish to colour the bar charts, (iii) whether they want to produce individual plots for

any variable, and (iv) which year(s) they wish to view data from. Continuing with the example

in Figure 7, the user has selected to view data for (i) Okura Bush, (ii) to colour their plots by

species, (iii) to display plots for individual people, and (iv) to only plot catches from 2015. Under

the ‘Colour Options’ tab, they have chosen to view data for all available species and under ‘Specific

plot options’ they have chosen to only view catch data for volunteers ‘Jonathan’ and ‘Rob M’.

Individual plots for the items selected under ‘Specific plot options’ are also produced. Each of

these selections is an ‘input’ and changing any will result in a different set of output graphics.

Although the graphics the application produces are fairly simple, the interactions and dependen-

cies between the inputs are reasonably complex. Since each project has unique data, the options

available within each input will vary dependent on the currently selected project. As such, the

interface must be very flexible in order to accommodate these differences. Therefore, a dynamic

UI using renderUI has been implemented to allow the various inputs to change according to the

selected area. Upon selecting an area, the application loads the corresponding master CSV file

for that area and reacts accordingly, only allowing feasible selections for the various inputs to be

available for selection by the user. The application begins by running a function that computes

all the key information that is required for determining the various inputs (for example, unique

species; unique volunteers; unique years). Due to privacy reasons, only volunteers’ first names are

recorded. Therefore this function is designed to recognise if there are any duplicates in volunteer
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names and, if so, attaches their username so each person can be uniquely identified.

## Server code excerpt:

## Reactive function of the data - returns a list containing the key

## information for the selected area

area.data <- reactive({

## Update only when a new area is selected - otherwise remain isolated

input$selectArea

isolate({

## Area name.csv

csvname <- paste(input$selectArea, ".csv", sep = "")

## Read the all time data

dat <- read.csv(csvname, as.is = TRUE)

...

...

...

< Ommitted 25 lines of code assigning each trapcheck: an index, a >

< calender year, a calender month, a julian day, the previous bait used >

< and the previous person to have checked the trap >

## Extract the project's unique species, volunteer names, lines, traps,

## baits and years

unique.species <- unique(dat$Species[dat$Species != ""])

unique.names <- unique(dat$FirstName[dat$FirstName != ""])

unique.lines <- unique(dat$Line[dat$Line != ""])

unique.traps <- unique(dat$TrapName[dat$TrapName != ""])

unique.bait <- unique(dat$Bait[dat$Bait != ""])

unique.years <- unique(dat$calyear[dat$calyear != ""])

...
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...

...

< Ommitted 25 lines of code assigning each trapcheck a previous trap >

< index referring to the index of the last trapcheck for that trap >

< Also creates an object 'datcatch', which only contains trapchecks >

< where a species was caught >

## Determining duplicates - trim.func ensures accidental leading and

## trailing spaces are removed from names

## Assign alias to be each person's 'trimmed' name

alias <- trim.func(unique.names)

## Determine which (if any) are duplicate First Names

which.dups <- which(duplicated(alias) | rev(duplicated(rev(alias))))

## Add username to any duplicate names so volunteers are distinguishable

## (e.g. Ollie, oste1)

if(length(which.dups) != 0){

alias[which.dups] <- paste(alias[which.dups],

unique(dat$Username)[which.dups], sep= ", ")

## Assign each duplicate person their FirstName + Username

for(i in 1:length(dat[, 1])){

person.counter <- match(dat$FirstName[i], unique.names)

dat$FirstName[i] <- alias[person.counter]

}

}

## List of key information to be extracted when determining selection

## options to be available on the UI

list(dat = dat, datcatch = datcatch, unique.species = unique.species,
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unique.names = unique.names, unique.lines = unique.lines,

unique.traps = unique.traps, unique.bait = unique.bait,

unique.years = unique.years)

})

})

Using the values from this function, the application determines the unique years the area has

available data, and allows only these years to be selectable options under the ‘Select Year’ tab.

The selected project (Okura Bush) only has recorded data for the years 2014 and 2015, hence these

are the only available options under ‘Select Year’. When viewing data by ‘Month over all years’,

or simply by ‘Year’, the application uses the entire dataset. Therefore to keep things simple, the

dropdown menu is only available when the user has selected to view data by ‘Month in a selected

year’. Having the menu on screen when the user wishes to view all time data serves no purpose,

other than to confuse users into thinking they must select a year when it will have no impact on

the graphics produced.

## UI code excerpt:

uiOutput("selectYear")

## Server code excerpt:

## Reactive dropdown menu for year selections

output$selectYear <- renderUI({

## Define the data as checks where a species was caught

datcatch <- area.data()$datcatch

## Extract the unique years available for the area and sort into decreasing

## order

unique.years <- unique(datcatch$calyear)

unique.years <- sort(unique.years, decreasing = TRUE)

## Conditional dropdown menu - only appears when the user selects to view
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## data in a selected year

conditionalPanel(

condition = "input.selectAggregate == 'Month in a selected year'",

selectInput("selectYear",

label = "Select Year",

choices = c(unique.years)

)

)

})

Figure 8. Select year options for Okura Bush

The application then determines the options that should be available under the ‘Colour Options’

tab. Because the user has selected to colour catches by ‘Species’, these options are the unique species

that have been caught in the selected area, Okura Bush. However, because the user has selected

to only view data from 2015, the application has filtered out any species that were not caught in

the selected year. For example, if the user had selected to view data exclusively from 2014, there

is no ‘Possum’ option available, as no possums were caught in Okura Bush during 2014.

## Ui code excerpt:

uiOutput("subject")

## Server code excerpt:

## Reactive list of 'subject' options ('colour by' selection options)

output$subject <- renderUI({

## Define 'subject' so R looks in the correct column of csv file
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subject <- input$selectSubject

if(input$selectSubject == "Person"){

subject <- "FirstName"

}

if(input$selectSubject == "Trap Type"){

subject <- "TrapType"

}

## This is important - when we want to plot catches by bait type remember

## the bait the animal ate was the previously set bait

if(input$selectSubject == "Bait"){

subject <- "prevbait"

}

## Define the data as trapchecks where a species was caught

datcatch <- area.data()$datcatch

## Create a column in the data that refers to the currently set 'subject'

## for each trapcheck

datcatch$subject <- datcatch[[subject]]

## Select trapchecks only from the selected year (if necessary)

if(input$selectAggregate == "Month in a selected year"){

datcatch <- datcatch[datcatch$calyear == input$selectYear, ]

## Return an error to the user if no catches made for the selected year

if(is.na(datcatch[1, 1]) == TRUE){

return("No data for the area in selected year")

}

}
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## Sort 'subject' in descending order of total catches

sort.table <- sort(table(datcatch$subject), decreasing = TRUE)

## Find unique 'subjects' to list

unique.subject <- names(sort.table)

## Scrolling list of 'subjects' - default option selects all

## selectize = FALSE, multiple = TRUE creates a scrolling list that

## allows multiple selections

selectInput('subject',

label = h5(paste("Select ", input$selectSubject, ":", sep = "")),

choices = unique.subject,

selected = unique.subject,

multiple = TRUE,

selectize = FALSE,

size = 5)

})

Figure 9. Colour options available when viewing data for Okura Bush from 2014

The available ‘Specific plot options’ are determined by a number of inputs. Because the ‘Display

a plot for each’ input is set to ‘Person’, this means we wish to produce individual plots for each

volunteer’s catch data. Therefore, the application firstly determines each unique person who has
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worked on the selected project, then filters out those who have not made any catches in the selected

year. Then, based on the selected species under ‘Colour Options’, the application filters out any

volunteers who have not caught any of these species. For example, when viewing data from 2015

for weasels only, we only have two available options, ‘Jonathan’ and ‘Steele’ as they were the only

volunteers to have a recorded weasel catch.

## Ui code exerpt:

uiOutput("subby")

## Server code excerpt:

## Reactive list of 'Display a plot for each' options

output$subby <- renderUI({

## Define 'subject' and 'by'

## ubject is the 'Colour catches by' selection

## by.vec is the 'Display a plot for each' selection

subject <- input$selectSubject

by.vec <- input$selectBy

## Correct for if 'subject' == 'Person', 'Trap Type' or 'Bait'

if(input$selectSubject == "Person"){

subject <- "FirstName"

}

if(input$selectSubject == "Trap Type"){

subject <- "TrapType"

}

if(input$selectSubject == "Bait"){

subject <- "prevbait"

}

## Define the data as trapchecks where a species was caught

datcatch <- area.data()$datcatch
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datcatch$subject <- datcatch[[subject]]

## Select trapchecks only from the selected year (if necessary)

if(input$selectAggregate == "Month in a selected year"){

datcatch <- datcatch[datcatch$calyear == input$selectYear, ]

## Return an error to the user if no catches made for the selected year

if(is.na(datcatch[1, 1]) == TRUE){

return(NULL)

}

}

## Extract input£selectBy and define in a new column in the data

datcatch$by <- datcatch[[by.vec]]

if(by.vec == "Person"){

datcatch$by <- datcatch$alias

}

if(by.vec == "Trap Type"){

datcatch$by <- datcatch$TrapType

}

if(by.vec == "Bait"){

datcatch$by <- datcatch$prevbait

}

## Remove cases where the respective 'by' column has been left

## blank (e.g. no line or person entered in the data)

datcatch <- datcatch[datcatch$by != "", ]

## Create a dataframe only for the trapchecks specified in input£subject

unique.subject <- input$subject

store.vec <- data.frame()
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for(i in 1:length(unique.subject)){

datvec <- datcatch[datcatch$subject == unique.subject[i], ]

store.vec <- rbind(store.vec, datvec)

}

datcatch <- store.vec

## Sort input£selectBy in descending order of catches

## This is done to ensure bar charts will plot selections in descending

## order of number of catches

sort.table <- table(datcatch$by)

sort.table <- sort(sort.table, decreasing = TRUE)

## List of unique 'by' options in descending order of catches

unique.by <- names(sort.table)

## Adopt plural form if input£selectBy == 'Person'

if(input$selectBy == "Person"){

by.vec <- "People"

}

## Conditional scrolling list selection - only viewable when user selects

## 'List input£selectBy'

conditionalPanel(

condition = "input.selectBy != 'No Selection' && input.by == 'List People'

|| input.by == 'List Lines' || input.by == 'List Species' ||

input.by == 'List Baits' || input.by == 'List Trap Types'",

selectInput("subby",

label = h5(paste("Select subset of ", by.vec, ":",

sep = "")),

choices = unique.by,

selected = unique.by,
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multiple = TRUE,

selectize = FALSE,

size = 10)

)

})

Figure 10. Specific plot options for volunteers who have caught weasels in 2015

Figures 9 and 10 give two clear examples of how complex coding in R Shiny can be. Both

code chunks produce scrolling lists of selections that are dependent on previous inputs. The lists

themselves are fairly uncomplicated, yet it has taken over 100 lines of R code to account for all

of the possible permutations and hiccups we might run into. Admittedly, after programming in

R Shiny for close to a year, I believe if the code were to be re-written I could produce the same

results using far fewer lines. However, the point still remains that something as simple as a list still

requires a fair amount of attention when it takes multiple dependencies.
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Finally, once a user is satisfied with their selections, they can produce their chosen graphics

by clicking the ‘Load Graphics’ button. Dependent on the size of the selected project, graphics

can take up to 5 seconds to compute and display on screen. It is at this final stage of producing

graphics that the functions isolate and observeEvent, outlined in Section 3.4.2, are of crucial

importance. Without removing dependencies using isolate, the application would be continually

producing and updating bar charts as we alter a single input. For example, the user might make

five changes to the default options; without isolate this would result in four sets of bar charts

being needlessly computed before the final portfolio of graphics the user wanted in the first place

is produced. Instead, the user clicks the ‘Load Graphics’ button to tell the application when it

should take the current selections and submit them to the graphics-producing code.

The final graphics displayed here show yearly catch numbers by volunteer for the Okura Bush

project, with no individual plots to be displayed.

## Ui code excerpt:

plotOutput("overall"),

uiOutput("stackedplot")

## Server code excerpt:

## Upon clicking the 'Load Graphics' button the code that plots

## the overall graphic (1st plot) runs

observeEvent(input$submit, {

output$overall <- renderPlot({

...

...

...

< Ommitted 150 lines of code that takes the currently selected options >

< and extracts the appropriate data to be plotted >

## Plot the barplot of selected options

barplot(datTable, beside = TRUE,

col = colour.diff[1:length(rownames(datTable))])

...
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...

...

< Omitted 20 lines of code that produce the appropriate titles and >

< legends for the current selections >

})

})

## Upon clicking the 'Load Graphics' button the code that plots the

## individual graphics run

observeEvent(input$submit, {

output$stackedplot <- renderUI({

...

...

...

< Omitted 240 lines of code that takes the currently selected options >

< and extracts the appropriate data to be plotted. >

< The code also determines the number of individual bar charts to be >

< plotted, dependent on the number of 'Display a plot for each' >

< selections and begins a loop to plot the graphics >

## Plot the individual barplot for the ith 'Display a plot for each'

## selection option

barplot(namesTables[[my_i]], col = colour.diff[1:length(input$subject)])

...

...

...

< Omitted 70 lines of code that produce the appropriate titles and >

< legends for the current selections >

})

})
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Figure 11. Plot of catch numbers for each year by volunteer for Okura Bush

The walk-through example gives a brief overview of how each of the selection options are

interrelated, and it is evident that many inputs are dependent on selections of previous inputs.

This goes to show that the code must be carefully structured such that any given input can take

many different values and still produce the appropriate graphics. It is here that we can begin to

appreciate the flexibility we are afforded by having all data in the same CatchIT format.

4.2 Solutions to technical challenges

Section 5.1 outlines the basic structure of how the various inputs of the bar chart application fit

together. However, there are many small details that go unnoticed, but if left unattended, would

result in clear instances of discontinuity in the application.

4.2.1 Producing the individual bar charts

A keen reader may have noticed in the code chunk relating to Figure 11, the first plot is produced

in the UI output using renderPlot, whereas the individual bar charts use uiOutput. Regardless

of the users’ selections, the first plot that details the project’s overall catch data is always plotted.

The renderPlot function is used to create a plotting space for this one bar chart.

However, the number of individual bar charts to be plotted varies according to the number

of selections made under ‘Specific plot options’. Therefore the function renderPlot cannot be
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used, as this only creates a plotting space in the output for a single bar chart. Piecing together

code found on the internet (http://stackoverflow.com/questions/15875786/dynamically-add-plots-

to-web-page-using-shiny) with my own code, the best solution was to use the more flexible renderUI

function. This allows the application to automatically determine the number of individual bar

charts to be plotted and then, in turn, to create the correct number of plotting spaces using

renderUI.

## Server code excerpt:

## Upon clicking the 'Load Graphics' button the code that plots the

## individual graphics runs

observeEvent(input$submit, {

output$stackedplot <- renderUI({

...

...

...

< Omitted 140 lines of code that takes the currently selected options >

< and extracts the appropriate data to be plotted. >

## Set plotlength for right number of outputs

## (# of items selected under 'Specific plot options')

plotlength <- length(input$subby)

## Creates a list of outputs to be filled with plots

output$stackedplot <- renderUI({

## Give each plot a unique name to refer to in the output

plot_output_list <- lapply(1:plotlength, function(i) {

plotname <- paste("plot", i, sep="")

plotOutput(plotname)

})

## Convert the list to a tagList - this is necessary for the list of
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## items to display properly (StackOverflow)

do.call(tagList, plot_output_list)

})

## Call renderPlot for each individual plot and fill each slot in the

## tagList with the appropriate plot

for (i in 1:plotlength){

## Need a local environment so that each item gets its own number.

## Without it, the value of i in the renderPlot() will be the same

## across all instances, because of how the expression is evaluated

## (StackOverflow)

local({

my_i <- i

## Fill the appropriate output in output£stackedplot

plotname <- paste("plot", my_i, sep = "")

## Call each plot

output[[plotname]] <- renderPlot({

...

...

...

< Omitted 20 lines of code automating the plot colours and legend >

< font size >

## Plot the individual barplot for the ith 'Display a plot for each'

## selection option

barplot(namesTables[[my_i]], col = colour.diff[1:length(input$subject)])

...

...
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...

< Omitted 70 lines of code that produce the appropriate titles and >

< legends for the current selections >

})

})

}

})

4.2.2 Clarity and continuity

In order to maintain clarity with regard to what is currently plotted on a user’s screen, the appli-

cation clears all graphics as soon any input is changed. Again, using the observeEvent function,

whenever the application registers the event of any input change, the plotting area is re-written

to be blank. A loading widget will appear and the screen will grey for the duration it takes the

application to recompute the selection options that should be available due to the input change.

## Ui code excerpt:

## Loading widget

busyIndicator("Please Wait", wait = 0)

## Server code excerpt:

## Load blank plots when area is changed

observeEvent(input$selectArea, {

## Clears the first (overall) plot

output$overall <- renderPlot({

return(NULL)

})

## Clears the 'Display a plot for each' plots

output$stackedplot <- renderPlot({

return(NULL)

})

})
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Figure 12. Example of loading widget and plots being cleared as area changes from Kaipupu to

MEG Coro Kiwi Project

This ensures that if any graphics are on the screen, they will match the currently selected

options exactly, limiting any confusion users might have regarding what they are viewing.

Another continuity issue, which was never entirely fixed, was the problem outlined in Section

3.4.1 where the non-linear structure of R Shiny code can cause the title of a plot to update before

the data. The cause of this was never fully resolved given the time constraints and it appears to

be a very minor issue, with the incorrect title lingering no more than a split second.

4.2.3 Automating colour selection and legends

The colouring of the plots is another area that required more thought than than one might think.

Ihaka (2003) outlines sensible guidelines with regards to colour selection in presentation graphics.

These recommendations include (i) avoiding large areas of high-chroma (bright) colours, as these

can produce distracting after-image effects; and (ii) using colours that are easy to distinguish

when colours are used to indicate group membership. Brewer (1999) recommends that, when each

category is equally important, a qualitative colour scheme should be used, such that each colour

should have a similar contrast. Using the R package RColorBrewer, which provides colour schemes

designed by Brewer (1999), a selection of nine pastel colours was chosen to best distinguish between

groups.
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(a) Default R colours

(b) RColourBrewer colours

Figure 13. Comparison of default R colours and RBrewerPal colours

In cases where the number of items to be plotted exceeds nine, the application automatically

interpolates between the nine base colours to produce the required number of colours:

## Define the 9 base colours

colour.diff <- brewer.pal(9, "Pastel1")

## Add colours if need more than 9

if(length(legend.string) > 9){

colour.diff <- colorRampPalette(brewer.pal(brewer.pal.info["Pastel1",

"maxcolors"], "Pastel1"))

}

These colours are still easily distinguishable from one another, although in cases where the

number of items to be plotted is very high, it is unavoidable to have some colours that are not
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dissimilar.

Another important, though seemingly innocuous piece of programming lies within the coding

of the legends. While coding a legend in R is usually a straightforward exercise, it is slightly more

difficult when automating the process. Firstly, it is important to determine the font size of the

legend based on the number of items to be listed. This ensures when a large number of items or a

particularly long item are to be plotted, the legend does not cover the entire graphic. Conversely,

when only a few items are plotted, this ensures the legend is a reasonable size, and not too small

to read.

## Server code excerpt:

## Legend size automation

min.cex <- 0.8

max.cex <- 2

## Number of items to be plotted

legend.string <- c(input$subject)

## Determine the font size dependent on the number and length of the items

## to be plotted

auto.cex <- max(min.cex, min(c(20/length(legend.string)),

20/nchar(legend.string)))

auto.cex <- min(auto.cex, max.cex)

## Plot the legend

legend("topleft", legend = legend.string, col = 1, pt.bg =

colour.diff[1:length(input$subject)], pch = 22, cex = auto.cex*0.8,

pt.cex = auto.cex*1.75, xpd = TRUE)
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(a) A legend containing a small number of items

(b) A legend containing a large number of items

(c) A legend containing a long item

Figure 14. Plots illustrating the automatic selection of colour and font size

Figure 14 clearly illustrates how the application automatically determines appropriate colours

and font sizes for any selection of inputs. This goes to show how two usually simple exercises in

plotting colours and legends, become much more complex when automating the process.
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5 Te Henga bait trial

In February 2015, the co-coordinators of the Te Henga conservation project approached the Uni-

versity of Auckland for advice on conducting a bait comparison trial. Their question of interest

was whether the bait currently funded by the Department of Conservation, Salted Rabbit, was any

more or less alluring than an alternative bait, Erayze - a commercial dried rabbit product. This

trial provided an opportunity to explore how the bar chart application might be used in a more

traditionally statistical manner.

The Te Henga project is situated on the west coast of Auckland, New Zealand, and consists of

two traplines that are checked fortnightly. The first line, ‘Wainamu’, consists of 54 traps around

Lake Wainamu, while the second line, ‘Wetlands’, consists of 35 traps in the Te Henga wetlands,

alongside Bethell’s Beach. As of late July 2014, traps have been baited each fortnight with either

Salted Rabbit or Erayze. Traps with an even numbered suffix were baited with Salted Rabbit and

those with an odd numbered suffix with Erayze. This gave a total of 44 traps baited with Salted

Rabbit and 45 traps baited with Erayze. It must also be noted there was a week in August 2015

where all traps were baited with Erayze due to a late delivery of Salted Rabbit.

Under the null hypothesis we assume that a trap baited with Salted Rabbit has equal probabil-

ity of making a catch compared with a trap baited with Erayze. A two-tailed t-test between two

different independent samples was used to compare the proportion of capture occasions that had

made successful catches between baits (Wild and Seber, 2000).

psr = the probability of making a catch per capture occasion using a trap baited with Salted Rabbit

p̂sr = the observed proportion of traps baited with Salted Rabbit that did make a catch

pe = the probability of making a catch per capture occasion using a trap baited with Erayze

p̂e = the observed proportion of traps baited with Erayze that did make a catch

nsr = the number of traps baited with Salted Rabbit

ne = the number of traps baited with Erayze

H0 : psr − pe = 0

Under H0 : p̂sr−p̂e
S.E.(p̂sr−p̂e) ∼ tdf

Where: df = min(nsr - 1, ne - 1); S.E.(p̂sr − p̂e) =
√

p̂sr(1−p̂sr)
nsr

+ p̂e(1−p̂e)
ne

This test allows us to calculate a p-value to determine whether there is any evidence to suggest

a bait has a significantly higher or lower probability of making a catch, compared with the other
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bait. Our assumptions of the trial outcomes being approximately normally distributed is fulfilled

as the number of trials was large (nsr = 1355 traps baited with Salted Rabbit; ne = 1442 baited

with Erazye).

The following report has been sent to the Te Henga project and summarises the findings of

the data obtained in the last 15 months. Bearing in mind that the co-coordinators of conservation

projects affiliated with CatchIT vary in statistical knowledge, reports are written using easy to

understand language, clearly explaining any statistical terms used.

Reports typically begin with easy-to-understand bar charts that give a clear picture of the data.

The more traditional statistical analyses involving p-values are left to the technical analysis section

5.1 Te Henga report

Explanatory bar charts (Data as of 3rd October 2015)

Figure 15. Bar chart of all catches for all species displayed by year.

Figure 15 shows species displayed by number of catches in descending order from left to right within

each year, i.e. ship rats are the most commonly caught species and Mice are the least commonly

caught species.
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Figure 16. Bar chart of all catches using Erayze and Salted Rabbit.

Figure 16 displays the number of catches made each month using both Erayze and Salted Rabbit.

Traps baited with Erayze have made slightly more catches overall than traps baited with Salted

Rabbit since the start of the trial.

Individuals of all species caught using Erayze = 209

Individuals of all species caught using Salted Rabbit = 182

Rats

Figure 17. Bar chart of overall bait catch numbers for rats (ship rats & Norway rats).

Figure 17 displays the number of rats caught each month using Erayze and Salted Rabbit. Most

months appear to have more catches made using Erayze (red) than Salted Rabbit (blue).
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Rats caught using Erayze = 136

Rats caught using Salted Rabbit = 105

Figure 18. Bar chart of bait catch numbers for ship rats.

Figure 18 displaying the number of ship rats caught each month using Erayze and Salted Rabbit.

Most months appear to have more catches made using Erayze than Salted Rabbit.

Ship rats caught using Erayze = 131

Ship rats caught using Salted Rabbit = 101

Figure 19. Bar chart of bait catch numbers for Norway rats.

Figure 19 displays the number of Norway rats caught each month using Erayze and Salted Rabbit.
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There appears to be similar numbers of catches made using each type of bait, given not many

Norway rats have been caught.

Norway rats caught using Erayze = 5

Norway rats caught using Salted Rabbit = 4

Mustelids

Figure 20. Bar chart of bait catch numbers for mustelids (stoats, weasels and ferrets).

Figure 20 displays the number of mustelids caught each month using Erayze and Salted Rabbit.

There appears to be similar numbers of mustelids caught by Erayze and Salted Rabbit in most

months, although far more have been caught using Salted Rabbit in January.

Mustelids caught using Erayze = 39

Mustelids caught using Salted Rabbit = 50
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Figure 21. Bar chart of bait catch numbers for weasels.

Figure 21 displays the number of weasels caught each month using Erayze and Salted Rabbit. There

appears to be slightly more catches made using Erayze than Salted Rabbit.

Weasels caught using Erayze = 26

Weasels caught using Salted Rabbit = 22

Figure 22. Bar chart of bait catch numbers for stoats.

Figure 22 displays the number of stoats caught each month using Erayze and Salted Rabbit. Unlike

weasels, more stoats appear to have been caught using Salted Rabbit than Erazye.

Stoats caught using Erayze = 13

Stoats caught using Salted Rabbit = 27
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No individual bar chart for ferrets has been provided, as only one ferret has been caught (using

Salted Rabbit).

Hedgehogs

Figure 23. Bar chart of bait catch numbers for hedgehogs.

Figure 23 displays displaying the number of hedgehogs caught each month using Erayze and Salted

Rabbit. There appears to be more catches made using Erayze than Salted Rabbit.

Hedgehogs caught using Erayze = 32

Hedgehogs caught using Salted Rabbit = 22

Technical Analysis

The above graphics give a rough indication of which bait (if any) each species might prefer, however

some simple statistical tests will give a better idea of whether these preferences are statistically

significant or have occurred due to random chance. A significant result is a statistician’s way of

saying we have some concrete evidence beyond ordinary chance.

In this experiment we have begun by assuming Erayze and Salted Rabbit should catch close to

equal numbers of individuals. For each species we can perform a test on the difference between the

observed number of catches made using Erayze and Salted Rabbit. This test will tell us whether

the difference is plausibly simply due to chance, or if the difference is large enough to be considered

such an unlikely observation that we might suspect a species prefers a particular bait type. In such
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a case we have evidence against the original assumption that catches are equally apportioned to

the two baits.

To determine how unlikely an observation is, we calculate a probability value (p-value) for each

species. This value represents the probability of a discrepancy between baits as large as the one

that we have observed under the the hypothesis of equal bait preference. Traditionally, a p-value

of 0.05 (5%) is considered to be an unlikely enough observation to give us evidence to suspect that

the baits differ in their attractiveness for that species.

Overall

Individuals of all species caught using Erayze = 209

Individuals of all species caught using Salted Rabbit = 182

Total individuals of all species caught = 391

p-value = 0.418

While more individuals of all species were caught using Erayze, we must take into account the

fact that slightly more traps were set with Erayze compared with Salted Rabbit (1442 vs. 1355).

The proportion of traps baited with Erayze that made a catch was 209
1442 = 0.145, or 14.5%. For

Salted Rabbit the proportion was 182
1355 = 0.134, or 13.4%, which is fairly similar to the Erayze

proportion.

The p-value associated with the overall data indicates that the probability of observing a bait-

wise discrepancy as large as this for individuals of all species is 41.8% under the hypothesis of equal

bait preference. This is a reasonably likely event and gives us no evidence to suggest Salted Rabbit

catches fewer individuals of all species than Erayze. However, we can look at the data more closely

to determine if there are any species-specific differences.

Rats

Rats caught using Erayze = 136

Rats caught using Salted Rabbit = 105

Total rats caught = 241

p-value = 0.112

The p-value indicates that the probability of observing a bait-wise discrepancy as large as this
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for rats is only 11.2% under the hypothesis of equal bait preference. This is not a particularly likely

observation, however it is not unlikely enough to provide evidence that Salted Rabbit does not

catch as many rats as Erayze. If more data are collected, it may become more clear as to whether

there is a real difference between bait catch effectiveness for rats.

Mustelids

Mustelids caught using Erayze = 39

Mustelids caught using Salted Rabbit = 50

Total mustelids caught = 89

p-value = 0.140

The p-value signifies that the probability of observing a bait-wise discrepancy as large as this

for mustelids is only 14.0% under the hypothesis of equal bait preference. Again, this is not a

particularly likely observation, however it does not provide any conclusive evidence to suggest

Salted Rabbit catches more mustelids than Erayze. While there does not appear to be a significant

difference in catch rates between baits for mustelids as a whole, we can look more closely at the

individual catch data.

Weasels

Weasels caught using Erayze = 26

Weasels caught using Salted Rabbit = 22

Total Weasels caught = 48

p-value = 0.715

Unlike the overall mustelid data, which had more Salted Rabbit catches, weasels have more Erayze

catches. However, the p-value of 0.715 means that the probability of observing a bait-wise discrep-

ancy as large as this for weasels is 71.5%. This is a likely event that gives no evidence to suggest a

difference in the weasel catch rates between the two baits.
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Stoats

Stoats caught using Erayze = 13

Stoats caught using Salted Rabbit = 27

Total Stoats caught = 40

p-value = 0.016

Over twice the number of stoats have been caught using Salted Rabbit, despite more traps be-

ing set with Erayze. The p-value of 0.016 means that the probability of observing a bait-wise

discrepancy as large as this for stoats is 1.6% under the hypothesis of equal bait preference. This

is an unlikely event and does provide strong evidence against our assumption of equal catch rates.

Therefore, there is evidence to suggest Erayze might not catch as many stoats as Salted Rabbit.

Whether this difference is due to an avoidance of Erayze or an attraction to Salted Rabbit cannot

be determined, but suggests Salted Rabbit is more effective nonetheless.

Ferrets

As only one ferret has been caught thus far, we are unable to perform any meaningful tests on this

species.

Hedgehogs

Hedgehogs caught using Erayze = 32

Hedgehogs caught using Salted Rabbit = 22

Total hedgehogs caught = 54

p-value = 0.251

More hedgehogs have been caught using Erayze, however the p-value indicates that the proba-

bility of observing 22 or fewer catches (of the 54) using Salted Rabbit is 25.1%. This is a somewhat

likely event and provides us with no evidence to suggest Salted Rabbit does not catch as many

hedgehogs as Erayze.

51



5.2 Summary of findings

The conclusions are somewhat interesting, as there is only statistically significant evidence at the

5% level to conclude that Salted Rabbit might catch more stoats compared with Erayze. However,

overall more individual pests have been caught using Erayze, although this may be due to the fact

there were slightly more traps baited with Erayze. The results suggest that any advantage of using

Erayze over Salted Rabbit is as yet undemonstrated, although the observed distribution of catches

for rats are approaching statistical significance. It appears as though if there is any advantage, it

is species specific and as such it would be wrong to declare that one bait is better than the other in

all facets. Instead, baits could be used together to target particular species, such as using Erayze

for rats, and Salted Rabbit for stoats.

It is also worth noting that due to time constraints, the calculated p-values have not accounted

for the fact we have conducted multiple hypothesis tests. The more hypothesis tests we conduct,

the more likely we are to find a statistically significant result somewhere. However, the issues

that arise with multiple comparisons are lessened as we continue to collect data over time. This

is because we are able to record independent future observations, to see if a previously observed

effect has persisted. Clearly we do not yet have enough data to do this for the Te Henga trial but

the point remains that within the wider scope of CatchIT, multiple comparisons might not be such

a problem.

Using the bar chart application we are able to quickly and easily produce visual summaries of

the data. Even to an untrained statistical eye, the bar charts at a glance give a relatively good

idea as to whether an overwhelming number of a species was caught by one particular bait. While

in this case it was explicitly asked that the relationship between Salted Rabbit and Erayze be

investigated, this report goes to show that visually inspecting data can quickly give a reasonably

good idea of whether a true statistical trend is present. As statisticians, we neither have the time,

nor frankly the interest, to spend all day looking for statistical patterns in bar charts for every

different permutation of data available to us. However, by affording conservation volunteers the

opportunity to explore their data via the bar chart application, they themselves may come across

particularly intriguing patterns in the data that might warrant further investigation.
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6 Heat map application

The heat map application is the second application I developed using R Shiny. It allows users to see

on a Google map where high densities of animal catches are being made for a selected conservation

project. This can be useful for gaining an understanding of the geographical layout of a project

and where the traps are located. Additionally, it helps provide a rough idea of which areas of traps

are making lots of catches, such as: traps found near water, or traps found at higher altitudes. The

user is able to choose to view data for specific species, specific volunteers and specific traplines, as

well as choose from a selection of viewing options.

The application produces two maps (i) a ‘heat map’ on the left, which represents high density

catch areas using a smooth overlay and (ii) a ‘catch map’ which has a bubble representing each

trap. The heat map displays the number of catches made in an area using a heat scale, ranging

from a transparent light yellow (very few catches) to dark red (many catches). For the catch map,

the size of the bubble is related to the number of catches made by that trap. These maps work well

in combination to inform the user where high numbers of species are being caught. The default

setting will produce maps for all species, all volunteers and all traplines.

Figure 24. Example heat map application interface
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The interface in Figure 24 gives an example of the output a user would be presented with

using the default settings for the Kaipupu project. Like the bar chart application, an overview

of the application is provided below in Section 6.1. Code excerpts are provided to detail the

interdependencies between inputs within the interface.

6.1 Overview and walk-through

The application provides a user with six main selection options, namely the:

1. Area (project)

2. Species

3. Individual volunteers

4. Traplines

5. Date range

6. Various viewing options (addressed in Section 6.2)

Like the bar chart application, the interdependencies between inputs are fairly complex. A

dynamic UI has again been implemented using renderUI to allow the inputs to react according

to the selected area. The user begins by selecting the area they wish to view data for, and the

application will upload the relevant master CSV file. A reactive function then runs, determining

what the appropriate selection options should be, and returns these options within the UI in the

form of scrolling lists.

## Server code excerpt:

## Reactive function of the data

ui.data <- reactive({

## Update when area is changed

input$selectArea

isolate({

## Area name.csv

csvname <- paste(input$selectArea, ".csv", sep = "")
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## Read the all-time data

dat <- read.csv(csvname, as.is = TRUE)

## Select cases where a species was caught

datcatch <- dat[dat$Species != "", ]

## Extract unique species, lines and traps

unique.species <- unique(datcatch$Species)

unique.lines <- unique(datcatch$Line)

unique.traps <- unique(datcatch$TrapName)

## Determining duplicate volunteer names

## (only display first names to protect privacy)

alias <- trim.func(unique.names)

## Determine which (if any) are duplicate First Names

which.dups <- which(duplicated(alias) | rev(duplicated(rev(alias))))

...

...

...

< Omitted 10 lines of code determining whether any volunteers have duplicate >

< first names, and if so, distinguishing them by adding their usernames >

## List of key information to be used when determining selection options

## within the UI

list(dat = dat, datcatch = datcatch, unique.species = unique.species,

unique.names = unique.names, unique.lines = unique.lines, unique.traps

= unique.traps)

})

})
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Using the information stored in the reactive list of this function, the application identifies the

appropriate species, volunteers and traplines specific to the selected project and displays them as

scrolling lists. The dates of the first and most recent observations are also extracted, allowing the

user to view data for a particular range of dates.

It might be noted in the following code excerpt that fewer lines of code are used to produce a list,

compared with code that produces lists for the bar chart application. This was my second attempt

at building an R Shiny application and as a result I had a much better idea of how reactive objects

interact with each other and was able to make the code more clear and concise. However, the

scrolling lists in the heat map application are less complex than those in the bar chart application

as they only take a single dependency—the selected area. The lists in the bar chart application

take multiple dependencies on the selections of other lists, which explains some of the additional

code required.

## Ui code excerpt:

column(3,

## Select area dropdown menu

selectInput("selectArea",

label = h3("Select Area"),

choices = c("Kaipupu", "Mataia", "MEG Coro Kiwi Project", "Okura Bush",

"Te Henga"),

selected = "Kaipupu"

),

br(),

## Load Maps button

actionButton("submit", label = "Load Maps", styleclass = "success")

),

column(3,

## Species scrolling list

uiOutput("selectSpecies"),

## 'Select All' action button

actionButton("allSpecies", label = "Select All"),

helpText("Click + Control: add/remove a selection"),
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helpText("Click + Shift: add/remove multiple selections")

),

column(3,

## People scrolling list

uiOutput("names"),

## 'Select All' action button

actionButton("allNames", label = "Select All"),

## Dates selection box

uiOutput("dates")

),

column(3,

## Traplines scrolling list

uiOutput("subLines"),

## 'Select All' action button

actionButton("allLines", label = "Select All")

)

## Server code excerpt:

##### Selection Options #####

## Date range box

output$dates <- renderUI({

## Load the data by extracting it from the ui.data list

dat <- ui.data()$dat

## Ensure "/" are "-" in .csv file

dat.ft <- ifelse(length(grep("/", dat$Date[1])) > 0, "%d/%m/%Y", "%d-%m-%Y")

## Make dat£Date into "Date" class

dat$Date <- as.Date(dat$Date, format = dat.ft)
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## Define first and last dates

first <- min(dat$Date)

last <- max(dat$Date)

dateRangeInput("dates",

label = h4("Date Range:"),

start = first,

end = last)

})

## Select species scrolling list

output$selectSpecies <- renderUI({

selectInput("selectSpecies",

label = h4("Select Species:"),

choices = sort(c(ui.data()$unique.species)),

selected = c(ui.data()$unique.species),

multiple = TRUE,

selectize = FALSE,

size = 6

)

})

## Select people scrolling list

output$names <- renderUI({

selectInput("names",

label = h4("Select People:"),

choices = sort(c(ui.data()$unique.names)),

selected = c(ui.data()$unique.names),

multiple = TRUE,

selectize = FALSE,

size = 6
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)

})

## Select traplines scrolling list

output$subLines <- renderUI({

selectInput("subLines",

label = h4("Select Lines:"),

choices = sort(c(ui.data()$unique.lines)),

selected = c(ui.data()$unique.lines),

multiple = TRUE,

selectize = FALSE,

size = 6

)

})

Once the user is satisfied with their selections, it is as simple as clicking the ‘Load Maps’ button

to produce the graphics. The application then runs a second reactive function that extracts the

‘working data’: the data that are relevant to the user’s selections. The benefit of this is that the

relevant data to be displayed graphically are extracted just once and can be simply plugged into

the plotting code. This is more efficient than the bar chart application which extracts the relevant

data twice, once for the overall plot and once for the individual plots.

## Server code excerpt:

## Reactive function of the working data

working.data <- reactive({

## Update when load map is clicked

input$submit

## Isolate so only updates when submit is clicked

isolate({
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## Load the data

dat <- ui.data()$dat

## Select appropriate date range

dat.ft <- ifelse(length(grep("/", dat$Date[1])) > 0, "%d/%m/%Y", "%d-%m-%Y")

dat$Date <- as.Date(dat$Date, format = dat.ft)

dat <- dat[dat$Date >= input$dates[1] & dat$Date <= input$dates[2], ]

## The data records for the selected species are automatically extracted within

## the levelMap.plot function (which is external code for creating catch maps)

## Extract data records for selected people

dat.vec <- c()

names.vec <- data.frame()

for(i in 1:length(input$names)){

dat.vec <- dat[dat$FirstName == input$names[i], ]

names.vec <- rbind(names.vec, dat.vec)

}

working.dat <- names.vec

## Extract cases for selected lines for selected people

dat.vec <- c()

lines.vec <- data.frame()

for(i in 1:length(input$subLines)){

dat.vec <- working.dat[working.dat$Line == input$subLines[i], ]

lines.vec <- rbind(lines.vec, dat.vec)

}

working.dat <- lines.vec

## Extract unique species, names, lines and traps

unique.species <- input$selectSpecies
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unique.names <- input$names

unique.lines <- input$lines

## Bandwidth (Focus), Quantile Threshold (Emphasis), Dates and Zoom values

## These are explained in more detail in Section 6.2

project <- input$selectArea

band <- input$range

## Quant is adjusted to prevent the 'bleeding' effect

quant <- log(exp(3)*input$quantile - input$quantile + 1)/3

lat <- range(working.dat$Latitude)

long <- range(working.dat$Longitude)

zoom <- MaxZoom(lat, long)

zoomer <- input$zoomer

dates <- input$dates

## Return a list of working data objects to plug into the map outputs

list(working.dat = working.dat, unique.species = unique.species, unique.names

= unique.names, unique.lines = unique.lines, project = project, dates =

dates, band = band, quant = quant, zoom = zoom, zoomer = zoomer)

})

})

The final graphics displayed in Figure 25 show where catches have been made in the Te Henga

project for all species in 2015. Within the plotting code below, the data to be plotted is simply

plugged in from the reactive working.data list.

## Ui code excerpt:

plotOutput("maps2")

## Server code excerpt:

##### Map Outputs #####

## Update maps when Load Maps is clicked

61



observeEvent(input$submit, {

output$maps2 <- renderPlot({

## Set the appropriate layout for the graphics - a 2x4 matrix of plots

## The top row of plots is used for the titles, the bottom for the maps

layout(matrix(c(1, 2, 3, 4, 5, 6, 7, 8), byrow=T, ncol=4), widths=c(1, 0.1,

1, 0.25), heights=c(0.1, 1), respect=T)

## First plot: title of heat map

## Remove the margins so the plots are juxtaposed

## Plot a grey rectangle for the title to be superimposed on

par(mar = c(0, 0, 0, 0), mgp = c(0, 0, 0))

plot(0, type = "n", bty = "n", xlim = c(0, 1), ylim=c(0, 1), xaxt = "n",

yaxt = "n")

rect(-0.04, -0.04, 1.04, 1.04, col=rgb(0.8, 0.8, 0.8, 1), lwd=1)

< Ommitted 30 lines of code that automates the title for the heat map >

< and determines over how many lines the title should be spread >

## Second plot: blank space between titles

frame()

## Third plot: title of catch map

par(mar=c(0, 0, 0, 0), mgp=c(0, 0, 0))

plot(0, type="n", bty="n", xlim=c(0, 1), ylim=c(0, 1), xaxt="n",

yaxt="n")

rect(-0.04, -0.04, 1.04, 1.04, col=rgb(0.8, 0.8, 0.8, 1), lwd=1)

< Ommitted 10 lines of code that automates the title for the catch map >

< and determines over how many lines the title should be spread >
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## Fourth plot is blank space - above the catch map legend

frame()

## Fifth plot is the heat map

intensity.wrap(dat = working.data()$working.dat, plotWhat =

working.data()$unique.species, bandw = working.data()$band,

quant.threshhold = working.data()$quant, trans.lo = 0.7,

trans.hi = 0.9, nsmooth = 500, zoom = working.data()$zoom +

working.data()$zoomer - 2, saveMap = )

## Sixth plot: blank space between maps

frame()

## Seventh plot is the catch map

## The legend creation is masked within the levelMap.plot function

levelMap.plot(dat = working.data()$working.dat, plotWhat =

working.data()$unique.species, zoom = working.data()$zoom +

working.data()$zoomer - 2)

})

})
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Figure 25. Heat map and catch map for all species caught in Te Henga in 2015

Any set of heat maps and catch maps can be produced for projects affiliated with CatchIT,

which again goes to show the flexibility in graphics creation we are afforded by having all data in an

identical format. The development of this application is another example of how we as statisticians

can give those with less statistical knowledge the ability to create personalised graphics and analyses.

6.2 Heat map viewing options

The application also offers several options to customise the heat map and how it displays catch

data. These options will only affect how the heat map is presented; the catch map remains constant

as a depiction of the raw data.

6.2.1 Focus

The first of these options is the ‘focus’, which essentially determines how much smoothing is applied

to the heat map. Statistically speaking the focus refers to the bandwidth, however, one of the

challenges of this project was to decide on non-technical terms for technical concepts. Focus was
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chosen as a word that suitably conveys this concept. A low value for focus gives a sharp heat map,

while a high value will give a smooth heat map. The default value for focus is 1 which gives a

map with a moderate amount of smoothing. The automation of producing the default heat map

to have a reasonably balanced appearance is a concept that has demanded a lot of attention, and

is addressed in more detail in Chapter 7.

A low value for focus means each trap’s influence on the map does not extend very far from

where it is placed, resulting in a heat map with numerous small areas of concentrated catches.

Increasing the value for focus increases the range of a trap’s influence, resulting in a smoother heat

map with only a few large areas of concentration

(a) Focus = 0.4 - a sharp heat map (b) Focus = 4 - a smooth heat map

Figure 26. Heat maps with low and high levels of focus

6.2.2 Emphasis

The emphasis will affect the amount of detail displayed on the heat map. Areas with the lowest

catch-rates are displayed transparently on the heat map; the emphasis setting selects what level

of catch-rate is considered low enough to be displayed transparently. A high value will display

information only for the regions which have made a large number of catches, emphasising the areas

that make the highest number of catches. A low value for emphasis will display information for

almost all regions. This option is useful for distinguishing areas of traps that make large numbers

of catches from areas which make fewer catches. Figure 27 below gives a clear example of this. The

heat map on the left appears to suggest that a lot of areas have made a high number of catches,

as shown by the many dark red (‘hot’) areas. However, when the emphasis is increased, only the

traps that are making the highest number of catches are shown on the map.
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(a) Emphasis = 0.1 (b) Emphasis = 0.9

Figure 27. Heat maps with low and high levels of emphasis

6.2.3 Zoom

Given a currently selected set of options, the application determines the appropriate level of zoom

for the heat map. However, if a user wants to zoom in or out, they can do so by using the zoom

slider. Zooming out is useful if a user wants to get a better idea of the surrounding landscape,

while zooming in can be useful when closely examining neighbouring traplines. Because the zoom

feature zooms in and out on the centre of the selected traplines, it is not particularly useful to zoom

in when many traplines are selected, as a good chunk of the map will get cut off. The example

in Figure 28 below illustrates how a user might zoom out to get a better view of the surrounding

area, or zoom in on a specific set of traplines.

(a) Heat map zoomed out showing surrounding area (b) Heat map zoomed in on a few specific traplines

Figure 28. Heat maps with different levels of zoom
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7 Automating the default heat maps

As noted in Chapter 6, a considerable amount of effort was placed into ensuring that the heat maps

produced using the default options are both attractive and informative. The challenge here is that

each conservation project has a unique shape that requires a unique overlay. Therefore, our chosen

method must be very flexible in adapting to new projects that might join CatchIT with any sort

of abnormal shape.

These shapes can range from the layouts of the Kaipupu and Tahi projects, which cover a fairly

square area and have fairly equally spaced traplines, to the more linear layouts of the Okura Bush

and D’Urville Island projects, which have traplines placed in a line with few loops, covering an

L-shaped or T-shaped area.

(a) Layout for the Kaipupu project (b) Layout for the Tahi project

Figure 29. Equally spaced traplines covering a square area

(a) Layout for the Okura Bush project (b) Layout for the D’Urville Island project

Figure 30. Linear traplines
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7.1 Creating the heat maps

Creating the heat map overlay in R first requires the data in the CSV file to be converted to a

point process object. This is essentially a dataset that has an entry for each trap, containing the x

and y-coordinates of the trap in the plotting region and the total number of catches made by that

trap.

## Example point process object for the Kaipupu project

## data.ppp is a planer point process object that belongs to the 'spatstat' package

head(data.ppp)

x y m

1 -109.51794 60.45919 1

2 -94.60486 15.81249 5

3 -29.82616 -209.28879 1

4 -21.43755 -11.47185 7

5 -29.36013 -13.33215 5

6 -43.34114 -11.47185 4

The initial approach for selecting the bandwidth for the heat map overlay was to use the R

function bw.diggle, which uses cross-validation to select a smoothing bandwidth value (defined as

σ), for the kernel estimation of point process intensity (Baddeley and Turner, 2005). This value for

σ is chosen to minimise the mean-square error criterion defined by Diggle (1985). The heat map

application then takes this value, and multiplies it by the currently selected value for the ‘Focus’

option (default = 1), and returns the heat map.

## Default bandwidth for the Kaipupu project

bw.diggle(data.ppp)

sigma

7.335026

Bandwidth = bw.diggle(data.ppp)× Focus (1)

Since the catch maps already represent the number of catches made by each individual trap,

the idea of the heat maps is to indicate areas of traps where high numbers of catches are made.
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Not enough smoothing by the bw.diggle function will result in each trap being given an individual

overlay, looking very similar to the catch map, while being less informative as there is no accompa-

nying legend. However, too much smoothing will result in the overlay being too focused on a single

area which is equally uninformative.

(a) A heat map too little enough smoothing (b) A heat map with too much smoothing

Figure 31. Extreme levels of smoothing

For projects with equally spaced traplines, the bw.diggle approach appears to apply an appro-

priate amount of smoothing and does a reasonably good job at producing a well-balanced overlay.

The heat maps in Figure 32 are both attractive and informative, clearly depicting areas and groups

of traps that have made high numbers of catches.

(a) Heat map for Kaipupu (b) Heat map for Tahi

Figure 32. Default heat maps produced using the bw.diggle function
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However, the bw.diggle approach does not do such a great job when it is applied to the

projects with more linear traplines, such as Okura Bush and D’Urville Island. The default heat

maps produced in Figure 33 have not had enough smoothing, and suggest that almost every trap

is a hotspot for catches, which is not the case.

(a) Heat map for Okura Bush (b) Heat map for D’Urville Island

Figure 33. Default heat maps produced using the bw.diggle function

Therefore, an adjustment to the bw.diggle approach must be made. The aim is that this ad-

justment should improve the default heat maps for projects with linear traplines, without affecting

the projects with equally spaced traplines.

7.2 Bandwidth adjustment

For the eight largest projects affiliated with CatchIT, the default bandwidth values were calculated

using bw.diggle. A rough approximation by eye was also made for each area as to how much this

default bandwidth value needed to be multiplied by to give a more informative heat map.

Area Default Bandwidth Approx Bandwidth Multiplier

1 Okura Bush 2.25 9.00

2 Kaipupu 7.34 1.60

3 Te Henga 23.78 0.75

4 Mataia 14.78 0.80

5 MEG Coro Kiwi Project 7.34 2.50

6 Durville 3.84 2.75

7 East Taranaki 14.14 2.00
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8 Tahi 24.90 1.00

There appears to be no logical pattern in the default bandwidth values calculated by bw.diggle,

however, this exercise does identify the projects Okura Bush and D’Urville Island, to be those most

in need of adjustment. As noted earlier, both of these projects have relatively linear trapline

layouts, giving us a starting point to work from.

Therefore, the idea of trap density was introduced to help determine how much the default

bandwidth value needs to be adjusted to produce an informative heat map. Drawing a convex hull

around the perimeter of the traps for each project gives a rough idea of a project’s trap density.

As seen in Figure 34, the trap density for projects with equally spaced traplines is fairly consistent

within the boundaries of the project.

(a) Convex hull for Kaipupu (b) Convex hull for Tahi

Figure 34. Convex hulls for projects with equally spaced traplines

However, for projects with linear traplines, the trap density is clearly very high in some locations

of the project (specifically the edges), but very low in others, as seen in Figure 35.
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(a) Convex hull for Okura Bush (b) Convex hull for D’Urville Island

Figure 35. Convex hulls for projects with linear traplines

In order to quantify the differences in trap densities, a Delaunay triangulation was applied to

each project, producing a tessellation of triangles between traps. We expected projects with fairly

equally spaced traplines, to have triangles that are mostly of similar size. In contrast, we expected

projects with linear traplines, to have triangles that have greater variation in size. This appears to

be the case as shown in Figures 36 and 37.

(a) Delaunay triangulation for Kaipupu (b) Delaunay triangulation for Tahi

Figure 36. Delaunay triangulations for projects with equally spaced traplines
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(a) Delaunay triangulation for Okura Bush (b) Delaunay triangulation for D’Urville Island

Figure 37. Delaunay triangulations for projects with linear traplines

Therefore, a relationship appears to exist between the shape of a project’s layout, and the

variation in size of the triangles produced by the Delaunay triangulation. To further investigate

this relationship, the plotting ratio and coefficient of variation for the Delaunay triangulation was

calculated for each project.

The plotting ratio was defined as the ratio between the actual plotting area of the Google map,

and the plotting area of the heat map overlay, examples of which can be seen below in Figure 38.

(a) Plotting ratio for Kaipupu = 0.44 (b) Plotting ratio for Okura Bush = 0.31

Figure 38. Plotting ratios
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The coefficient of variation for the Delaunay triangulation was calculated as follows:

µ = mean area of triangles

σ2 = variance of triangle edge lengths

Coefficient of variation =

√
σ2

µ
(2)

The coefficient of variation was expected to be larger for projects that have linear traplines,

while the plotting ratio informs us how much of the screen the overlay will cover.

Area CoV Plotting Ratio CoV/PR Bandwidth Multiplier

1 Okura Bush 2.06 0.31 6.65 9.00

2 Kaipupu 0.87 0.44 1.98 1.60

3 Te Henga 1.04 0.63 1.65 0.75

4 Mataia 0.90 0.56 1.61 0.80

5 MEG Coro Kiwi Project 0.90 0.23 3.91 2.50

6 Durville 1.45 0.31 4.68 2.75

7 East Taranaki 1.31 0.61 2.15 2.00

8 Tahi 0.82 0.51 1.61 1.00

These results appear to suggest that areas with large values for coefficient of variation
plotting ratio will likely

have a larger value for the desired bandwidth multiplier. This relationship is plotted below in

Figure 39.
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Figure 39. Plot of desired bandwidth versus coefficient of variation
plotting ratio

Taking the log of the y-axis variable, desired bandwidth multiplier; the relationship becomes

somewhat linear, allowing us to perform a linear regression.

Figure 40. Plot of log(desired bandwidth) versus coefficient of variation
plotting ratio
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lm(log(desired.bandwidth) ~ I(CoV/Plot.ratio))$coef

(Intercept)

-0.648

I(CoV/Plot.ratio)

0.411

The fitted line for this regression is plotted in Figure 40 in blue. A marginal adjustment (plotted

in red) has been made to this regression, as some projects were more sensitive to the adjustment

than others (specifically the MEG Coro Kiwi Project). This gives a final adjustment of:

Bandwidth adjustment = exp

(
0.76 + 0.43× coefficient of variation

plotting ratio

)
(3)

Therefore, the final bandwidth used by the heat map application when calculating the overlays

is:

Final bandwidth = Bandwidth adjustment× bw.diggle(data.ppp)× Focus (4)

This chapter again goes to show that producing informative, attractive graphics is one hurdle

to overcome, but the real challenge lies in automating the production. It cannot be denied that

the bandwidth adjustment detailed in this chapter is heuristic in nature, however its effectiveness

speaks for itself. Projects that previously produced rather poor heat maps when using the default

bandwidth calculated by bw.diggle, now produce much more informative graphics. Additionally,

the projects for which the default bandwidth value worked fine, are barely changed. The heat maps

of each project before and after the bandwidth adjustment are shown in Figures 41 - 48 below.
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(a) Heat map using default bandwidth (b) Heat map using adjusted bandwidth

Figure 41. Kaipupu heat maps

(a) Heat map using default bandwidth (b) Heat map using adjusted bandwidth

Figure 42. Tahi heat maps

(a) Heat map using default bandwidth (b) Heat map using adjusted bandwidth

Figure 43. Okura Bush heat maps
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(a) Heat map using default bandwidth (b) Heat map using adjusted bandwidth

Figure 44. D’Urville Island heat maps

(a) Heat map using default bandwidth (b) Heat map using adjusted bandwidth

Figure 45. Mataia heat maps

(a) Heat map using default bandwidth (b) Heat map using adjusted bandwidth

Figure 46. MEG Coro Kiwi Project heat maps
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(a) Heat map using default bandwidth (b) Heat map using adjusted bandwidth

Figure 47. Te Henga heat maps

(a) Heat map using default bandwidth (b) Heat map using adjusted bandwidth

Figure 48. East Taranaki heat maps
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8 Conclusions and further work

At the time of printing, the two applications are being distributed to various conservation projects

in New Zealand communities and schools. In the near future, they will be utilised by hundreds of

people, ranging from school children to retired volunteers. Initial feedback from volunteers indicates

that the maps and graphics are both informative and easy-to-use; the applications are serving their

intended purpose of presenting statistical data in a creative, attention-grabbing manner.

The flexibility of these applications allows new projects to be readily incorporated. The only

requirement is to convert the data into the prescribed format, which is simply achieved by contacting

the CatchIT developers. New users of the applications require no knowledge of R or statistics to

get their data up and running.

The success of these applications for conservation volunteers in New Zealand highlights the

scope for bridging the gap between lay-people and their understanding of data, in other disciplines.
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