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Abstract

Cricketing knowledge tells us batting is more difficult early in a player’s innings, but

gets easier as a player becomes familiar with the local conditions. Using Bayesian

inference and nested sampling techniques, a model is developed to predict the Test

match batting abilities of international cricketers. The model allows for the quantifi-

cation of players’ initial and equilibrium batting abilities, and the rate of transition

between the two. Implementing the model using a hierarchical structure provides

more general inference concerning a selected group of international opening batsmen

from New Zealand. More complex models are then developed, which are used to

identify the presence of any score-based variation in batting ability among a group of

modern-day, world-class batsmen. Additionally, the models are used to explore the

plausibility of popular cricketing superstitions, such as the ‘nervous 90s’. Evidence

is found to support the existence of score-based variation in batting ability, however

there is little support to confirm a widespread presence of the ‘nervous 90s’ affect-

ing player batting ability. Practical implications of the findings are discussed in the

context of specific match scenarios.
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Chapter 1

Introduction

Since the inception of statistical record-keeping in cricket, a player’s batting ability

has primarily been recognised using a single number, their batting average. However,

in cricketing circles it is common knowledge that a player will not begin an innings

batting to the best of their ability. Rather, it takes time to adjust both physically

and mentally to the specific match conditions. This process is nicknamed ‘getting

your eye-in’. External factors such as the weather and the state of the pitch are

rarely the same in any two matches and can take time to get used to. Additionally,

batsmen (a term commonly used to refer to both male and female cricketers) will often

arrive at the crease with the match poised in a different situation to their previous

innings, requiring a different mental approach. Subsequently, batsmen are regularly

seen to be dismissed early in their innings while still familiarising themselves with the

specific match conditions. This suggests that a constant-hazard model, whereby the

probability of a batsman being dismissed on their current score (called the hazard)

remains constant regardless of their score, is not ideal for predicting when a batsman

will get out.

Compared with many sports, cricket is unique in the sense that physical differences

between matches, such as the weather and the pitch, have a significant bearing on how

a particular match will be played out. Vastly different approaches to the game are seen

between the dusty, spinner-friendly pitches of India, and the green seaming pitches

1



2 Chapter 1. Introduction

common in the likes of England and New Zealand. As these external factors vary

considerably between matches, batsmen must adapt their technique and game plan

accordingly to best cope with the local conditions, which can be difficult, especially

in foreign environments.

Given the statistical culture that has developed with the growth of cricket, statis-

tics such as batting averages have become the acknowledged method of best judging

a player’s ability. Other statistics, such as the number of runs a player has scored in

their career, or the number of occasions they have passed significant milestones such

as 50 and 100 are also useful. However, coaches, commentators and players alike,

can all get a quick, and often fairly accurate understanding of an individual’s batting

ability, simply by looking at their batting average. For a sport as complex as cricket,

where a single match can continue for up to five days and a career can span over 20

years, it seems inadequate to measure a player’s batting ability over the course of an

innings, using just one number.

It would be of practical use to both coaches and players to have a more flexible

method of quantifying how well a batsman is performing at any given stage of their

innings. Identifying players’ batting weaknesses and improving team selection can be

aided by tools that estimate measures such as (1) how well batsmen perform when

they first arrive at the crease, (2) how much better they perform once they have got

their ‘eye-in’ and (3) how long it takes them to accomplish this.

Furthermore, due to the statistical nature of the game, milestones can also play a

large role in a batsman’s innings. Passing scores of significance, such as 50 and 100,

carries a mark of distinction among cricketers and doing so becomes a permanent

part of a player’s career record. Psychological studies have indicated mood can have

a significant impact on a cricketer’s performance (Totterdell, 1999), suggesting player

concentration levels may change over the course of an innings. As a result, it is

not uncommon to see batsmen lose concentration after passing significant scores and

playing risky shots they may not have otherwise attempted. Superstition also has a

place among the hearts of many cricketers, which may result in a lapse (or perhaps an

increase) in judgement and concentration when nearing so-called ‘unlucky numbers’.
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The term ‘nervous 90s’ has been coined to refer to a form of analysis paralysis

suffered by a batsman who is currently on a score between 90 and 99 (i.e. near the

significant milestone score of 100). The ‘nervous 90s’ are a favourite among the likes

of commentators and the media, who will attribute almost any dismissal in the 90s,

due to nerves. A player may bat more conservatively than they might otherwise while

in the 90s, which may be indicative of the fact they are aware how close they are to

scoring a century. Opposition captains may use this as an opportunity to set more

attacking fields to a batsman in the ‘nervous 90s’, in the hopes of creating additional

pressure and inducing the batsman into a false stroke. However, despite plenty of

anecdotal evidence that many players do become more nervous while on scores in the

90s, there is no clear evidence that these nerves adversely affect batting ability.

Player mood and concentration may also be affected by various off-field anomalies.

South African batsman Neil McKenzie was the culprit of one of the more bizarre

superstitions, always taping his bat to the dressing-room ceiling before going out to

bat, while all-time Indian great, Sachin Tendulkar, was known for always strapping

on his left pad before his right. It may be that such players, with strange pre-

match rituals, are more likely to succumb to superstitions such as the ‘nervous 90s’.

Therefore, accounting for these additional factors, one might expect to see deviations

in a batsman’s ability around certain scores, rather than reaching a plateau at some

peak ability.

1.1 Studies in cricket

Statistical analysis is particularly valid for sports such as cricket, given the closed

nature of the skills of batting and bowling. Unlike sports such as rugby and football,

this generally allows the large amounts of data collected each match, to be treated

independently of the specific match scenario. Therefore, due to the data-rich nature

of the sport, cricket has been the focus of numerous statistical studies.

From a public perspective, it is difficult to know exactly what international and

domestic teams focus on in terms of cricketing statistics, as the information is highly
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sensitive. However, despite the abundance of data available in cricket, it is yet to be

commercially exploited to the same extent as its American cousin, baseball. Much of

the ‘statistical’ analysis performed in the public realm, outside academia, is relatively

low level, often revolving around simple summary statistics and ground histories.

In the past, having a statistical analyst as part of a team’s coaching staff would

be seen as a waste of time and money, however with the resources and computing

power available today, we can only assume having a dedicated statistician is becoming

become more and more of a necessity. Consequently, the volume of cricket-related

research has grown since the turn of the century, with studies tending to fall in one

of four categories

1. Achieving a fair result in interrupted matches.

2. Predicting the outcome of a match.

3. Optimising playing strategies.

4. Analysing player performance and ability.

Achieving a fair result

Many of the early studies focussing on cricket fall into the first category, as statis-

ticians trialled various methods of resolving interrupted (usually weather-related)

limited-overs cricket matches. In the late 1990s the Duckworth-Lewis method (Duck-

worth & Lewis, 1998) was developed and has since become the entrenched method of

dealing with interrupted matches.

Since its implementation, the Duckworth-Lewis method (now Duckworth-Lewis-

Stern or D/L/S) has become the most well-known statistical tool used in cricket.

Various attempts have been made to fine-tune or better the Duckworth-Lewis method

(Thomas, 2002; Jayadevan, 2002; Carter & Guthrie, 2004), however none have suc-

ceeded in supplanting it as the international cricketing standard.
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Predicting the outcome of a match

Following the development of the Duckworth-Lewis method, cricketing research has

recently shifted to have more of a prediction and analytical focus. As tends to happen

when sport and statistics collide, outcome prediction has been scrutinised heavily

by coaches, bookies, punters and spectators alike. The WASP tool (Winning And

Score Predictor) (Brooker & Hogan, 2011) has enjoyed some public success, achieving

somewhat of a cult status in parts of the cricketing world, featuring on televised

coverage of Twenty20 and one-day matches in New Zealand and England. WASP

uses historical and local ground data to predict the score to be made by the team

batting first, followed by the probability of the team batting second chasing the score

down. However, despite the attempts of cricket-mad statisticians (Brooks et al.,

2002; Bailey & Clarke, 2006; Swartz et al., 2009; Brooker & Hogan, 2011), as with all

sports, no sure-fire method has emerged for determining which side will come away

victorious.

Optimising playing strategies

Measures such as batting and bowling averages have also been used to optimise both

player and team performance, in order to fine-tune both playing strategies (Clarke,

1988; Clarke & Norman, 1999; Preston & Thomas, 2000; Davis et al., 2015), and

decision making (Clarke & Norman, 2003; Swartz et al., 2006; Norman & Clarke,

2010) during a match.

Several of the developed methods in this area, while interesting, are of limited

use, as they tend to focus on very specific match circumstances, making it difficult

to apply them in a broader scope. Such strategies would be useful for teams if they

could be applied concurrently, as a match is played.

Analysing player performance and ability

The content in this thesis falls into the category of analysing player ability and focusses

on developing new player performance measures, specifically to assess how batting
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abilities of players change during an innings. Surprisingly few studies have explored

possible player performance measures which better explain batting ability than the

humble batting average.

One of the first documented cases of statistics being used to model batting scores

occurred in the pre-computing era; Elderton & Wood (1945) provided empirical ev-

idence to support the claim that a batsman’s scores could be modelled using a ge-

ometric progression. However, the geometric assumption does not necessarily hold

for all players (Kimber & Hansford, 1993), namely due to its difficulty in fitting the

inflated number of scores of 0 appearing in many players’ career records. To account

for this, Bracewell & Ruggiero (2009) proposed to model player batting scores using

a distribution called the ‘Ducks ‘n’ runs’ distribution, which is a mixture of a beta

distribution and a geometric distribution. The beta distribution is used to model

player contribution, defined as the proportion of runs an invididual contributes to-

wards their team’s total. As the probability of having a contribution of zero is equal

to 0 under the beta distribution, a small continuity correction is applied. This allows

for the calculation of a player’s probabilty of failing to contribute any runs (ducks)

towards their team’s total. The geometric component then describes the distribution

of non-zero scores (runs).

Rather than model batting scores, Kimber & Hansford (1993) used nonparametric

models to derive a player’s hazard at a given score, estimating dismissal probabilities

as a batsman’s innings progresses. Methods for estimating the hazard function for

discrete and ordinal data have long-existed in survival analysis (McCullagh, 1980;

Allison, 1982), and have applications across a wide range of disciplines. However,

the present case may be considered unusual in the context of discrete hazard func-

tions, given the large number of ordered, discrete points (i.e. number of runs scored)

(Agresti & Kateri, 2011). Estimating the hazard function allows us to observe how

a player’s dismissal probability (and therefore, batting ability) varies over the course

of their innings. While Kimber & Hansford (1993) found batsmen were more likely

to get out early in their innings, due to the sparsity of data at higher scores these

estimates quickly become unreliable and the estimated hazard function jumps er-



1.1. Studies in cricket 7

ratically between scores. Cai et al. (2002) addressed this issue using a parametric

smoother on the hazard function, however given the underlying function they used

is still a nonparametric estimator, the problem of data sparsity still remains an issue

and continues to distort the hazard function at higher scores.

Bayesian stochastic methods have also been used to measure batting performance

(Koulis et al., 2014; Damodaran, 2006). Koulis et al. (2014) proposed a model for

evaluating performance based on player form, however this only allows for innings to

innings comparisons in terms of batting ability, rather than comparisons during an

innings. On the other hand, Damodaran (2006) provides a method which does allow

for within-innings comparisons, but lacks a natural cricketing interpretation. Various

other performance metrics have been proposed, however these have been developed

in relation to limited overs cricket (Lemmer, 2004, 2011; Damodaran, 2006; Koulis

et al., 2014). Our focus is exclusively on Test and first-class cricket, as limited overs

cricket introduces a number of complications (Davis et al., 2015).

As an alternative, Brewer (2008) proposed a Bayesian parametric model to esti-

mate a player’s current batting ability (via the hazard function) given their current

score, using a single change-point model. This allows for a smooth transition in the

hazard between a batsman’s ‘initial’ and ‘eye-in’ states, rather than the sudden jumps

seen in Kimber & Hansford (1993) and to an extent Cai et al. (2002). Based on our

knowledge of cricket, it is fair to assume that batsmen are more susceptible early

in their innings and tend to perform better as they score more runs. The findings

from Brewer (2008) confirm these assumptions, however, of particular note, was that

the batsmen with the highest career batting averages, are not necessarily the best

batsmen when beginning an innings.

A primary aim of this thesis was to further develop the model in Brewer (2008) to

better identify how a batsman’s ability changes over the course of an innings, ideally

giving a better indication of batting ability than their batting average. The resulting

models have practical implications in terms of how they can be applied in a match

situation, and have the added benefit of a natural cricketing interpretation, which

coaches and players can easily understand.



8 Chapter 1. Introduction

1.2 Bayesian inference

As the foundation of our models is based on the approach of Brewer (2008), those

detailed in this thesis were developed within a Bayesian framework. Working under

the Bayesian paradigm, as opposed to the more traditional frequentist paradigm,

allows us to to express all forms of uncertainty in terms of probability, providing us

with the tools to update our beliefs in the face of new data (O’Hagan & Forster,

2004).

Applying the principles of Bayesian inference to a problem, firstly requires choices

to be made regarding the questions we want to answer and the assumptions we are

willing to make (Brewer, 2014). Under a Bayesian approach, part of this initial

decision making process requires us to specify prior distributions for our parameters of

interest, θ. These prior distributions represent our initial state of knowledge regarding

the parameters and can be written as p(θ|m), where m are our model assumptions.

Working within a Bayesian context with cricketing data is convenient, as we already

have considerable knowledge on how we expect the game to be played. As such, we

can assign appropriate subjective prior distributions to our parameters of interest,

reflecting our knowledge of cricket.

Our goal is to make meaningful inference regarding our parameters, θ, by inferring

from the data, d. Upon observing the data, we are able to update our prior beliefs

regarding θ, expressing them as a posterior distribution p(θ|d,m). However, in order

to get from the prior distribution to the posterior distribution, we must also consider

what the likelihood of observing our data was, given our prior beliefs, i.e. p(d|θ,m).

If the data we observe is drastically different from what we expected under our prior

assumptions for θ, we must update our posterior beliefs accordingly, so that future

data of the same kind is more plausible.

The equation connecting the prior and posterior distribution for θ, is known as

Bayes’ theorem. Considering two propositions, A andB, we can derive Bayes’ theorem
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using the product rule

P (A ∩B) = P (A) P (B|A)

P (B ∩ A) = P (B) P (A|B)

∴ P (A|B) =
P (A) P (B|A)

P (B)
. (1.1)

Therefore, we can use Bayes’ theorem from Equation 1.1 to express the posterior

distribution for θ as

p(θ|d,m) =
p(θ|m) p(d|θ,m)

p(d|m)
, (1.2)

where p(d|m) is the marginal likelihood or ‘evidence’. This is the probability of

observing the data, computed by integrating across all possible values of θ, weighted

by our prior beliefs for each particular value of θ. As it can be difficult to obtain

p(d|m), we can simplify the posterior distribution to

p(θ|d,m) ∝ p(θ|m) p(d|θ,m). (1.3)

Since we are often dealing with multiple parameters, the posterior distribution

is often of high dimension, which can be difficult to express numerically. Therefore,

in order to quantify our beliefs regarding θ once we have observed the data, we

must summarise the posterior distribution. This can be achieved using numerical

techniques such as Markov Chain Monte Carlo (MCMC) methods, which samples

from the posterior distribution. Popular MCMC methods include the Metropolis-

Hastings algorithm (Hastings, 1970), and Gibbs sampling (Geman & Geman, 1984).

1.2.1 Nested sampling

Nested sampling is a technique developed by physicist John Skilling (Skilling, 2006),

that enables the computation of a posterior distribution. More specifically, nested

sampling estimates directly how the likelihood function relates to the prior mass. A
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major advantage of the nested sampling algorithm is that the primary result is the

marginal likelihood, or evidence, a quantity which cannot be easily computed using

standard MCMC methods.

Formally, nested sampling computes

Z = marginal likelihood =

∫
p(θ) L(θ) dθ,

where p(θ) is the prior distribution for θ and L(θ) is the likelihood function. There-

fore, if d are our data and m are our background model assumptions, the evidence

quantities, Z, are the probabilities of observing the data given our model assumptions,

i.e. P (d|m). The marginal posterior distributions for θ, are also readily available from

the nested sampling computation, by taking weighted samples of θ from the nested

sampling run (Skilling, 2006).

Consider two models, with unique assumptions m1 and m2 and parameters θ1 and

θ2. Using Bayes theorem (Equation 1.1) we can calculate the posterior distributions

for θ1 and θ2 when fitting each model to identical data. The models can then be

compared, using the evidence ratio or Bayes factor, which is the Bayesian equivalent

to the likelihood ratio (Kass & Raftery, 1995)

P (m1|d)

P (m2|d)
=
P (m1)

P (m2)
× P (d|m1)

P (d|m2)
. (1.4)

Equation 1.4 calculates the posterior odds, which is simply the prior odds multi-

plied by Bayes factors. Where standard MCMC methods only compute the posterior

p(θ|d,m), model comparison becomes trivial if competing models are fitted using

nested sampling, as the marginal likelihood is a primary result of the computation.

Diffusive nested sampling

The simple implementation of the nested sampling algorithm given by Skilling (2006)

is sufficient when dealing with models of relatively low dimensionality. However, in

cases where the number of model parameters is large, standard nested sampling can
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become computationally impractical. Additionally, nested sampling can struggle in

cases where the likelihood function exhibits multimodality, usually getting stuck at

one of the local maximum likelihood values.

Diffusive nested sampling (DNS) (Brewer et al., 2011; Brewer & Foreman-Mackey,

2016) is a variant of the nested sampling algorithm, which can be applied in scenar-

ios where standard nested sampling falls short. In high dimensional problems DNS

produces more accurate estimates for the marginal likelihood, Z, and ought to outper-

form classic nested sampling on multimodal problems (Brewer & Foreman-Mackey,

2016).

Each of the models detailed in this thesis were fitted using either classic nested

sampling (Skilling, 2006) or diffusive nested sampling (Brewer et al., 2011; Brewer &

Foreman-Mackey, 2016). Those which used classic nested sampling were implemented

using the Julia programming language1 (Bezanson et al., 2014), while models which

required diffusive nested sampling, used a C++ (ISO, 2012) implementation of the

algorithm that calls Julia to evaluate the likelihood function. The post-processing

and manipulation of data was primarily dealt with using R (R Core Team, 2015), as

well as the construction of most graphics (Wickham, 2009).

1.3 The present study

This thesis focusses on the fitting and analysis of models which describe a cricket

player’s batting ability over the course of an innings. A class of flexible models are

investigated to determine whether or not we can tentatively confirm or deny the

effects of popular cricketing superstitions, such as the ‘nervous 90s’.

In Chapter 2, we propose an alternative Bayesian model to Brewer (2008) for

inferring a batsman’s hazard function from their career batting record. This model

is then applied as part of a hierarchical inference in Chapter 3, allowing us to make

generalised statements about a wider group of players (in this case, opening batsmen

who have represented New Zealand), rather than being restricted to analysing a single

1https://github.com/eggplantbren/NestedSampling.jl
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player at a time. Both Chapters 2 and 3 provide the basis of publication for Stevenson

& Brewer (2017).

Using the initial model detailed in Chapter 2 as a foundation, more flexible models

are explored and developed in Chapter 4. These models allow for increased temporal

variation in player batting ability across a player’s innings, and are used to evaluate

the existence of any detrimental effects on batting ability due to the ‘nervous 90s’.

Chapter 5 uses the marginal likelihood values computed for each model to perform

model comparison. The thesis is then summarised using a single marginal likelihood

value, which allows for the present set of models to be compared with future models,

if the same data set is applied.

Finally, Chapter 6 summarises the findings for each of the proposed models, sug-

gesting practical uses that could be implemented by teams and coaches.



Chapter 2

The exponential varying-hazard

model

2.1 Overview

This chapter details the initial varying-hazard model, presented in Stevenson &

Brewer (2017), used to model batting ability over the course of a player’s innings

(hereafter referred to as the exponential varying-hazard model). The model likelihood

is defined in Section 2.2, with particular emphasis placed on the parameterisation of

the hazard function, outlined in Section 2.2.1.

Once the model is sufficiently defined, its performance is compared with the model

of Brewer (2008), analysing the same data set of retired international cricketers (Sec-

tion 2.3.2). The model is implemented using the Julia programming language (Bezan-

son et al., 2014) and allows us to quantify each players’

1. Ability when they first arrive at the crease.

2. Ability when they have their ‘eye-in’.

3. The speed of the transition between these two states.

The conclusions drawn from the model fitting process are similar to those in

Brewer (2008), though differing levels of uncertainty in parameter estimates are ob-

13
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tained. A clear difference in initial and ‘eye-in’ ability is observed for most players,

validating our belief that a constant hazard model is not usually ideal for predicting

when a batsman will be dismissed.

2.2 Model structure

The derivation of the model likelihood follows the method detailed in Brewer (2008)

and Stevenson & Brewer (2017). In cricket, a player bats and continues to score runs

until (1) they are dismissed, (2) every other player in his team is dismissed, (3) his

team’s innings is concluded via a declaration or (4) the match ends. Consider the

score X ∈ {0, 1, 2, 3, ...} that a batsman scores in a particular innings. Define the

hazard function, H(x) ∈ [0, 1], as the probability the batsman gets out on score x,

given they are currently on score x; i.e., the probability the batsman scores no more

runs

H(x) = P (X = x|X ≥ x) =
P (X = x,X ≥ x)

P (X ≥ x)
=
P (X = x)

P (X ≥ x)
. (2.1)

Throughout this section, all probabilities and distributions are conditional on some

set of parameters, θ, which will determine the form of H(x) and therefore P (X = x).

We proceed by defining G(x) = P (X ≥ x) as the ‘backwards’ cumulative distribution.

Using this definition, Equation 2.1 can be written as a difference equation for G(x)

G(x) = P (X ≥ x)

G(x) = P (X = x) + P (X ≥ x+ 1)

G(x) = H(x)G(x) +G(x+ 1)

G(x+ 1) = G(x)−H(x)G(x)

G(x+ 1) = G(x)[1−H(x)]. (2.2)

With the initial condition G(0) = 1 and an assumed functional form for H(x), we
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can calculate G(x) for x > 0:

G(x) =
x−1∏
a=0

[1−H(a)]. (2.3)

This is the probability of scoring one run, times the probability of scoring two

runs given the batsman scored one run, etc., up to the probability of scoring x runs

given that the batsman scored x − 1 runs. Therefore, the probability mass function

for X is given by the probability of surviving up until score x, then being dismissed:

P (X = x) = H(x)
x−1∏
a=0

[1−H(a)] , (2.4)

which is the probability distribution for the score in a single innings, given a model

of H.

When we infer the parameters θ from data, this expression provides the likelihood

function. For multiple innings we assume conditional independence, and for not out

innings we use P (X ≥ x) as the likelihood, rather than P (X = x). This assumes that

for not out scores, the batsman would have gone on to score some unobserved score,

conditional on their current score and their assumed hazard function. If we considered

these unobserved scores as additional unknown parameters and marginalised them

out, we would achieve the same results but at higher computational cost. Thus, if I

is the total number of innings and N is the number of not out scores, the probability

distribution for a set of conditionally independent scores {xi}I−Ni=1 and not out scores

{yi}Ni=1 is

p({x}, {y}) =
I−N∏
i=1

(
H(xi)

xi−1∏
a=0

[1−H(a)]
)
×

N∏
i=1

( yi−1∏
a=0

[1−H(a)]
)
. (2.5)

When data {x, y} are fixed and known, Equation 2.5 above gives the likelihood
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for any proposed model of H(x; θ), the hazard function. The log-likelihood is

log [L(θ)] =
I−N∑
i=1

log H(xi) +
I−N∑
i=1

xi−1∑
a=0

log[1−H(a)] +
N∑
i=1

yi−1∑
a=0

log[1−H(a)] (2.6)

where θ is the set of parameters controlling the form of H(x).

2.2.1 Parameterising the hazard function

The parameterisation of the hazard function, H(x), will influence how well we can fit

the data, as well as what we can learn from doing so. In order to accurately reflect

our belief that batsmen are more susceptible to being dismissed early in their innings,

the hazard function should be higher for low values of x (i.e. low scores) and decrease

as x increases, as the batsman scores more runs and gets used to the specific match

conditions.

Consider the constant hazard model H(x) = h, for all scores x, whereby a bats-

man has equal probability of being dismissed on every score. Deriving the sampling

distribution P (X = x) for the constant hazard model (see Equation 2.7) gives the

geometric distribution, similar to the approach used by Elderton & Wood (1945).

H(x) = P (X = x|X ≥ x), from Equation 2.1

P (X = x) = H(x)
x−1∏
a=0

[1−H(a)] , from Equation 2.4

= h

x−1∏
a=0

[1− h]

= h(1− h)x. (2.7)

Thinking in terms of the geometric distribution, a batsman’s expected score is

µ = 1
h
− 1. If we continue to think in terms of the expected number of runs scored

by a batsman, µ, it makes sense to parameterise the hazard function in terms of an

‘effective batting average’, µ(x), which evolves with score as a batsman ‘gets their
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eye-in’. This allows us to think of batting ability in terms of batting averages rather

than dismissal probabilities, which has a more natural interpretation to the everyday

cricketer and non-cricketer alike. We can obtain H(x) from µ(x) as

H(x) =
1

µ(x) + 1
. (2.8)

Therefore the hazard function, H(x), relies on our parameterisation of a player’s

effective batting average, µ(x). It is reasonable to consider that batsmen begin their

innings playing with some initial batting ability µ(0) = µ1, which increases with the

number of runs scored until a peak batting ability µ2 is reached. Brewer (2008) used

a sigmoidal model for the transition from µ1 to µ2. However, it is both simpler and

probably more realistic to adopt a functional form for µ(x), where the transition from

µ1 to µ2 necessarily begins immediately, and where µ(0) = µ1 by definition. Therefore

we adopt an exponential model, where µ(x) begins at µ1 and approaches µ2 as follows:

µ(x;µ1, µ2, L) = µ2 + (µ1 − µ2) exp
(
−x
L

)
. (2.9)

Our model contains just three parameters: µ1 and µ2, the initial and equilibrium

batting abilities of the player, and L, the timescale of the transition between these

states. Formally, L is the e-folding time and can be understood by analogy with a

‘half-life’, signifying the number of runs to be scored for 63% of the transition between

µ1 and µ2 to take place. The major change between the present model and that of

Brewer (2008) is that we use just a single parameter, L, to describe the transition

between the two effective average parameters, and that µ1 has a natural interpretation

since it equals µ(0) (i.e. the batsman’s initial ability before scoring any runs).

Since we do not expect a batsman’s ability to decrease once arriving at the crease,

we impose the constraint µ1 ≤ µ2. However, it is worth noting there are various

instances during a Test match where this assumption may be violated. Batting often

becomes more difficult due to a deterioration in physical conditions such as the pitch

or light. The introduction of a new bowler or new type of bowler (e.g. a spin rather

than seam bowler) may also disrupt the flow of a batsman’s innings, especially when
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the change coincides with the bowling side opting to take the new ball after 80 (or

more) overs. Moreover, batsmen are likely to take some time re-adjusting to the

conditions after a lengthy break in play, particularly when resuming their innings at

the start of a new day. However, data on these possible confounders is difficult to

obtain and it is not clear that including them in the model and then integrating over

their related parameters would lead to a large difference from our current approach

of ignoring these effects because we do not have the relevant data.

Additionally, we do not expect the transition between the two batting states to

be any larger than the player’s ‘eye-in’ effective batting average, so we also impose

the restriction L ≤ µ2. To implement these constraints, we performed the inference

by re-parameterising from (µ1, µ2, L) to (C, µ2, D) such that µ1 = Cµ2 and L = Dµ2,

where C and D are restricted to the interval [0, 1]. In terms of the three parameters

(C, µ2, D), the effective average function is

µ(x;C, µ2, D) = µ2 + µ2(C − 1) exp

(
− x

Dµ2

)
. (2.10)

Figure 2.1. Examples of various plausible effective average functions µ(x), ranging
from small to large differences between the initial and equilibrium effective averages
µ1 and µ2, with both fast and slow transition timescales L.



2.2. Model structure 19

Therefore the hazard function takes the form

H(x) =
1

µ2 + µ2(C − 1) exp
(
− x
Dµ2

)
+ 1

. (2.11)

See Figure 2.1 for examples of possible effective average functions µ(x) allowed by

this model.

2.2.2 Prior specification

The first stage of the analysis involved evaluating individual player data, using fixed

priors for the parameters C, µ2 and D of each player. This allows us to calculate the

joint posterior distributions for µ1, µ2 and L for each player. All that is required to

analyse individual players using the exponential varying-hazard model is to specify

priors on parameters C, µ2 and D. All parameters are non-negative and C and D lie

between 0 and 1.

For µ2, we selected a prior that loosely coincides with our cricketing knowledge and

other anecdotal evidence. A career batting average of 20 is regarded as fairly standard

across all cricketers to have played Test match cricket, when considering both batsmen

and bowlers. Therefore a Lognormal(log(25), 0.752) prior was chosen for µ2, signifying

a prior median ‘eye-in’ batting average of 25, with a width (standard deviation of

log(µ2)) of 0.75. The lognormal distribution was preferred as it is a natural and

well-known distribution for modelling uncertainty about a positive quantity whose

uncertainty spans an order of magnitude or so. This prior implies an expected number

of runs per wicket of approximately 33 when batsmen have their ‘eye-in’, which seems

reasonable in the context of Test cricket. The width of 0.75 implies a conservatively

wide uncertainty. The prior 68% and 95% credible intervals for µ2 are [11.81, 52.93]

and [5.75, 108.7] respectively.

Selecting a prior which considers a wider range of µ2 values is ill-advised, as it

would allow the model to fit very high ‘eye-in’ batting abilities for a player with a

small sample of high scoring innings. In reality, it is highly improbable that any Test
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player will have an effective average greater than 100 at any stage of their innings,

except for perhaps the great Sir Donald Bradman, whose cricketing feats are unlikely

to be seen again1.

The priors for C and D were also chosen to be independent from all other pa-

rameters in the model. As C and D are restricted to the interval [0, 1], both priors

were chosen to follow a beta distribution. The notion of ‘getting your eye-in’ implies

a player’s initial batting ability is somewhat worse than their ‘eye-in’ batting ability.

Therefore a Beta(1, 2) prior was assigned to C, emphasising the lower end of the [0,

1] interval, representing a mean initial batting ability that is one-third of a player’s

‘eye-in’ batting ability.

Additionally, we expect a player’s e-folding time to be small in comparison to

their ‘eye-in’ batting ability. A Beta (1, 5) prior, further emphasising the lower end

of the [0, 1] interval, was assigned to D, representing a mean e-folding time that is

one-sixth of a player’s ‘eye-in’ batting ability. If both C and D shared a common

Beta(1, 2) prior, the model would favour effective average functions with exceedingly

long transition periods between a batsman’s initial and ‘eye-in’ batting abilities.

These priors are presented in Figures 2.2, 2.3 and 2.4, and allow for a range of

plausible hazard functions (see Figure 2.1). The overall Bayesian model specifica-

tion for analysing an individual player using the exponential varying-hazard model is

therefore

µ2 ∼ Lognormal(log(25), 0.752) (2.12)

C ∼ Beta(1, 2) (2.13)

D ∼ Beta(1, 5) (2.14)

log-likelihood ∼ Equation (2.6) (2.15)

1Donald Bradman averaged 99.94 in Tests, the next highest is Adam Voges, averaging 61.87.
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Figure 2.2. Prior probability density function for µ2.

Figure 2.3. Prior probability density function for C.

Figure 2.4. Prior probability density function for D.
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The joint posterior distribution for µ2, C and D is proportional to the prior times

the likelihood function. We can then sample from the joint posterior distributions

to make inferences about an individual player’s initial batting ability (µ1), ‘eye-in’

batting ability (µ2) and the abruptness of the transition between these states (L).

Implementing the exponential varying-hazard model

To perform the computation, we used a Julia (Bezanson et al., 2014) implementa-

tion2 of the nested sampling algorithm (Skilling, 2006) that uses Metropolis-Hastings

updates (see Section 1.2.1). This allows us to easily obtain and sample from the pos-

terior distributions of parameters µ1, µ2 and L, for each player, as well as computing

the marginal likelihood.

For each player, we used 1000 nested sampling particles and 1000 MCMC steps

per nested sampling iteration. As the model only contains three parameters, simpler

MCMC schemes (or even simple Monte Carlo or importance sampling) would work

here. However, we used nested sampling from the beginning as it allowed us to

continue using the same method, even as our models increase in complexity (see

Chapter 4), and carry out model selection trivially (Chapter 5).

2.2.3 Data

The data used were the career batting records of the players considered in the study

and were obtained from Statsguru, the cricket statistics database on the Cricinfo

website3. This was achieved using web scraping techniques with help of the R package

cricketr (Ganesh, 2016). A range of variables are available for each innings, however

we are primarily interested in the number of runs scored and whether or not the

batsman was dismissed (for example see Table 2.1).

Test match data were chosen in favour of other formats, as the model assump-

tions are more likely to be sufficiently realistic. Players have more time to bat in

Test matches and therefore scores are more likely to reflect a player’s true batting

2https://github.com/eggplantbren/NestedSampling.jl
3http://www.espncricinfo.com/
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Table 2.1: Example of a Test match batting career data file, including the number of
runs scored, minutes batted, balls faced and mode of dismissal for each innings.

Runs Mins BF 4s 6s SR Pos Dismissal Inns Opposition Ground Start-Date

46 158 103 6 0 44.66 1 Bowled 1 Pakistan Christchurch 15-Mar-2001

73* 281 219 10 0 33.33 3 Not out 3 Pakistan Christchurch 15-Mar-2001

106 422 280 14 1 37.85 1 Caught 2 Pakistan Hamilton 27-Mar-2001

26 82 61 4 0 42.62 1 LBW 2 Australia Brisbane 8-Nov-2001

57 93 69 6 0 82.60 1 LBW 4 Australia Brisbane 8-Nov-2001

nature, rather than the specific match situation, such as batsmen tending to play

more aggressively at the beginning and end of a team’s innings in a one-day match.

As the varying-hazard model is an adaptation of the model specified in Brewer

(2008), the same data set was used to assess model performance. This data set

consists of an arbitrary mixture of retired batsmen, all-rounders and a bowler, each

of whom enjoyed a long Test career during the 1990s and 2000s (see Table 2.2).

Table 2.2: Players analysed using the exponential varying-hazard model.

Player Role Country
C. Cairns All-Rounder New Zealand
N. Hussain Batsman England
G. Kirsten Batsman South Africa
J. Langer Batsman Australia
B. Lara Batsman West Indies
S. Pollock All-Rounder South Africa
S. Warne Bowler Australia
S. Waugh Batsman Australia

2.3 Results

2.3.1 Marginal posterior distributions

The model allows us to draw samples from the each of marginal posterior distributions

for each parameter, for each player. To illustrate the practical implications of the

results, posterior samples for former Australian captain Steve Waugh are shown in

Figure 2.5.
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Figure 2.5. Posterior marginal distributions for µ1, µ2 and L for Steve Waugh. The
contours represent the 50th, 68th and 95th percentile limits. Created using the cor-
ner.py package (Foreman-Mackey, 2016).
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The marginal distribution for µ1 implies that Waugh arrives at the crease batting

with the ability of a player with an average of 13.2 runs. After scoring about 3 runs,

Waugh has transitioned approximately 63% of the way between his initial batting

ability and ‘eye-in’ batting ability. Looking more closely at the effective average

curve suggests Waugh reaches his ‘eye-in’ batting ability after scoring approximately

20 runs, at which point he bats like a player with an average of 58.5. Figure 2.6 gives

a visual representation of these estimates.

The marginal distributions in Figure 2.5 are used to construct point estimates for

the effective average curves (using µ(x;µ1, µ2, L) from Equation 2.9). These curves,

seen in Figures 2.6 and 2.7, indicate how well individual players are batting given

their current score, that is, the average number of runs they will score from a given

score onwards.

Figure 2.6. Plot of Steve Waugh’s estimated effective average µ(x), illustrating how
his batting ability changes with his current score. The blue and red lines represent
68% and 95% credible intervals.
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2.3.2 Posterior summaries

Using the marginal posterior distributions, estimates and uncertainties were derived

for the three parameters of interest for each player. The estimates take the form,

posterior median ± standard deviation, and are presented in Table 2.4, together with

each player’s Test career record in Table 2.3. The median is used as the posterior

distributions are not necessarily symmetric and some have relatively heavy tails.

Table 2.3: Test career batting records for analysed players.

Player Matches Innings Not Outs Runs High-Score Average Strike Rate 100s 50s

C.Cairns (NZ) 62 104 5 3320 158 33.53 57.09 5 22

N.Hussain (ENG) 96 171 16 5764 207 37.18 40.38 14 33

G.Kirsten (SA) 101 176 15 7289 275 45.27 43.43 21 24

J.Langer (AUS) 105 182 12 7696 250 45.27 54.22 23 30

B.Lara (WI) 131 232 6 11953 400* 52.88 60.51 34 48

S.Pollock (SA) 108 156 39 3781 111 32.31 52.52 2 16

S.Warne (AUS) 145 199 17 3154 99 17.32 57.65 0 12

S.Waugh (AUS) 168 260 46 10927 200 51.06 48.64 32 50

Unsurprisingly, the players with the highest career averages (Brian Lara and Steve

Waugh) appear to be the best players once they have their ‘eye-in’ (i.e. they have

the highest µ2 estimates). However, it is not necessarily these players who arrive

at the crease batting with the highest ability. In fact, two of the players with the

highest initial batting abilities, µ1, are those with lower career Test averages, all-

rounders Chris Cairns and Shaun Pollock. Interestingly, both players tend to bat

in the middle to lower order and have lower estimates for µ2, their ‘eye-in’ batting

ability, suggesting they do not quite have the same batting potential as the other top

order batsmen. This outcome may be due to initial batting conditions tending to be

more difficult for batsmen in the top order, compared with those in the middle and

lower order. Additionally, the result may derive from the aggressive nature in which

Cairns and Pollock play, meaning even when they are dismissed early in their innings,

they often return to the pavilion with some runs to their name. Analysing a larger

sample of similar lower-order, aggressive batsmen would be useful for determining
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Table 2.4: Parameter estimates and uncertainties for each analysed player using the
exponential varying-hazard model. The logarithm of the marginal likelihood for the
exponential varying-hazard model is presented alongside the logarithm of the Bayes
factor, comparing the exponential varying-hazard and constant hazard models. ‘Prior’
indicates the prior point estimates and uncertainties.

Player µ1 68% C.I. µ2 68% C.I. L 68% C.I. loge(Z) loge(Z/Z0)

C.Cairns 16.6+6.4
−5.2 [11.4, 23.0] 36.1+4.4

−3.8 [32.3, 40.5] 2.3+4.6
−1.7 [0.6, 6.9] −449.69 1.04

N.Hussain 12.8+4.6
−3.2 [9.6, 17.4] 40.8+4.3

−3.5 [37.3, 45.1] 1.9+2.7
−1.2 [0.7, 4.6] −714.52 5.88

G.Kirsten 14.4+4.8
−3.4 [11.0, 19.2] 53.9+6.6

−5.3 [48.6, 60.5] 6.3+4.6
−2.9 [3.4, 10.9] −769.79 10.00

J.Langer 18.0+7.5
−4.8 [13.2, 25.5] 49.2+5.0

−4.2 [45.0, 54.2] 2.7+4.1
−1.8 [0.9, 6.8] −800.83 3.95

B.Lara 15.1+4.6
−3.5 [11.6, 19.7] 61.8+5.7

−5.1 [56.7, 67.5] 6.1+3.9
−2.7 [3.4, 10.0] −1114.95 13.37

S.Pollock 18.2+4.8
−4.3 [13.9, 23.0] 37.4+5.8

−4.4 [33.0, 43.2] 5.6+6.0
−3.5 [2.1, 11.6] −526.15 1.83

S.Warne 5.3+1.2
−0.9 [4.4, 6.5] 21.2+2.1

−1.9 [19.3, 23.3] 1.3+1.2
−0.8 [0.5, 2.5] −679.77 15.60

S.Waugh 13.2+4.2
−2.8 [10.4, 17.4] 58.5+5.8

−4.8 [53.7, 64.3] 3.1+3.4
−1.6 [1.5, 6.5] −1032.36 13.98

Prior 6.6+12.8
−5.0 [1.6, 19.4] 25.0+27.7

−13.1 [11.9, 52.7] 3.0+6.7
−2.3 [0.7, 9.7] N/A N/A

whether or not strike rate and batting position are in fact influential on a player’s

point estimate for parameter C (the size of µ1 with respect to µ2).

The marginal likelihood or evidence, was also computed for each player analysed

using the individual player model. In this case we can use the evidence to compare

the support for our varying-hazard model (Z), against a constant hazard model (Z0)

which has a Lognormal(log(20), 0.752) prior assigned to its constant effective average

µ. The logarithm of the Bayes factor between these two models is included in Table

2.4 and suggests the varying-hazard model is favoured for all players. As the nested

sampling method used is an MCMC process, these results are not exact, however

the algorithm was run with a large number of particles and MCMC iterations and

therefore the Monte-Carlo related errors are negligible.

These results are relatively consistent with Brewer (2008), who used a different

model for µ(x); Cairns, Langer and Pollock are the best batsmen when first arriving

at the crease, and Lara and Waugh have the highest ‘eye-in’ batting abilities. The

actual point estimates were similar in most cases, though the present model has less

uncertainty in values of µ1 (most likely since µ1 = µ(0) in our model), but more

uncertainty in µ2 values. It is difficult to directly compare the transition variable L,
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as Brewer (2008) used two parameters to capture the change between the two batting

states.

2.3.3 Predictive hazard functions

The posterior summaries allow us to construct predictive hazard and predictive ef-

fective average functions, for a given player’s next innings. This is a slightly different

point estimate for µ(x) than the posterior mean or median.

Given a player’s career batting data, d, the predictive hazard function is obtained

by calculating the posterior predictive distribution for a player’s ‘next’ score given

the data, and deriving the hazard function H(x) corresponding to the predictive

distribution using Equation 2.1. The predictive effective average function can then

be derived from the predictive hazard function using Equation 2.9. For clarity, only

the functions for four of the recognised batsman in the analysis were included (Gary

Kirsten, Justin Langer, Brian Lara and Steve Waugh).

Figure 2.7. Predictive effective average functions, µ(x), for Kirsten, Langer, Lara and
Waugh.
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Figures 2.7 and 2.8 gives a visual representation of the posterior summaries in

Table 2.4. Of the four players shown, Waugh has the lowest effective average when

first arriving at the crease. However, Waugh gets his ‘eye-in’ relatively quickly and

appears to be batting better than the others after scoring just 2 or 3 runs. Not

until scoring approximately 15 runs does Lara overtake Waugh in terms of effective

average, suggesting Lara is a better batsman when set at the crease (Equation 2.16),

but takes longer to ‘get his eye-in’ (Equation 2.17).

P (µ2 Lara > µ2 Waugh|d) = 0.66 (2.16)

P (LLara > LWaugh|d) = 0.75 (2.17)

An interesting comparison can also be made between Kirsten and Langer, two

opening batsmen with identical4 career Test batting averages of 47.27. Langer arrives

at the crease with a higher initial batting ability than Kirsten (Equation 2.18) and is

Figure 2.8. Predictive hazard functions, H(x), for Kirsten, Langer, Lara and Waugh.

4Identical within two decimal places.
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also quicker to get his ‘eye-in’ (Equation 2.19).

P (µ1 Langer > µ1 Kirsten|d) = 0.70 (2.18)

P (LLanger < LKirsten|d) = 0.77 (2.19)

Only after scoring about 13 runs, does Kirsten look to be playing better than Langer

in terms of batting ability. This arguably makes Langer the preferred choice for an

opening batsmen as it suggests he is less susceptible at the beginning of his innings

and is more likely to succeed in his job as an opener, seeing off the new ball and

opening bowlers.

2.4 Limitations and conclusions

The effective average curves derived from the exponential varying-hazard model in

Section 2.3.3 are useful for identifying potential strengths and weaknesses during a

batsman’s innings. However, it is worth noting the model excludes parameters that

are very important within a cricketing context. While all batsman will admit scoring

runs often results in a boost in confidence, simply facing a delivery (and not scoring

from it) will help a batsman become more used to the pace and bounce of the pitch,

and in turn aid in the process of getting their ‘eye-in’. Some batsmen may even

benefit from standing at the non-striker’s end and watching their partner face several

deliveries.

Therefore, in order to come to more substantive conclusions as to how well a player

is batting at a given stage of their innings, it is worthwhile considering the variables

‘balls faced’ or ‘minutes batting’, in conjunction with runs scored. Such a model may

be considered in the scope of future work, however, incorporating these additional

variables into an accurate working model is no easy feat, as it introduces all sorts of

complex interactions between variables.

In our estimation of the model parameters, we have assumed a batsman’s ability

is constant over the course of their career. In reality, it is far more realistic that some
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time dependent effects exist between parameters µ1, µ2 and L. Temporal variation

may exist on two scales, long-term changes due to factors such as age and experience,

and short-term changes due to opposition, player form and confidence. Allowing the

model parameters to vary across multiple innings may give us the ability to answer

more difficult questions, such as how long it takes a new Test batsmen to find their

feet on the international stage and start performing at their best. A player where this

would be especially applicable would be former New Zealand captain, Daniel Vettori,

who spent the first six years of his career (1997-2002) batting at numbers 9, 10 and 11,

averaging just 16.26. However, over the remainder of his Test career (2003-2014) he

averaged 36.47, and grew into a valuable all-rounder, frequently batting at numbers

6, 7 and 8.

Furthermore, temporal effects may also exist during a batsman’s innings. In

imposing the restriction that the hazard function must be monotonically decreasing

(and therefore that the effective average is monotonically increasing), our estimates

for a player’s ability are not as erratic as those in Kimber & Hansford (1993) and Cai

et al. (2002). However, it is entirely plausible, if not probable, that effects between

certain scores and a player’s effective average exist. For example, it is not uncommon

to see batsmen lose concentration after batting for a long period of time or, before or

after passing a significant milestone (e.g. scoring 50, 100, 200).

Therefore, in Chapter 4 we introduce more flexible models, which allow for a

batsman’s effective average to fluctuate, even after getting their ‘eye-in’, rather than

plateauing after a certain score.
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Chapter 3

Hierarchical analysis of New

Zealand opening batsmen

3.1 Overview

In this chapter, the exponential varying-hazard model is applied using a hierarchical

model structure, allowing us to make generalised inferences regarding a wider group

of players; in this case, opening batsman who have represented New Zealand in Test

matches, at the international level.

The model structure is redefined in Section 3.2, such that the prior for µ2 is defined

conditional on hyperparameters ν and σ. Posterior inference for ν and σ allows us to

quantify the typical batting abilities and transition speeds for New Zealand opening

batsmen since 1990.

In Section 3.3.2, these results are used to make an informed prediction concerning

the batting abilities of the next opening batsman to debut for New Zealand. Com-

parisons are made between New Zealand’s best performing retired opening batsman,

Mark Richardson, and current opening batsman Tom Latham, identifying areas of

particular strength and those which require improvement.

33
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3.2 Model structure

While knowing the performance of individual players is useful, we can generalise our

inference to a wider group of players by implementing a hierarchical model structure.

Instead of applying the prior µ2 ∼ Lognormal(log(25), 0.752) to each player, we define

hyperparameters η = (ν, σ) such that the prior for each player’s µ2 is

µ2,i|ν, σ ∼ Lognormal(log(ν), σ2). (3.1)

When we infer ν and σ from the data for a group of players, we can quantify the

typical µ2 value the players are clustered around using ν, while σ describes how much

µ2 varies from player to player.

To apply the hierarchical model, each player in the group of interest was analysed

using the exponential varying-hazard model in Chapter 2. The results were then post-

processed to reconstruct what the hierarchical model would have produced. This is a

common technique for calculating the output of a hierarchical model without having

to analyse the data for all players jointly. Hastings (1970) suggested using MCMC

samples for this purpose.

3.2.1 Prior specification

The hierarchical model is implemented by writing the prior for µ2 conditional on

hyperparameters η = (ν, σ), as Lognormal(log(ν), σ2), rather than using a common

Lognormal(log(25), 0.752) prior for all players. The idea is to gain an understanding

of the posterior distributions for ν and σ, rather than µ2 directly. Whereas informal

prior knowledge of cricket was used to assign the original Lognormal(log(25), 0.752)

prior, the hierarchical model does this more explicitly, as the prior for a player’s

parameters is informed by the data from other players. The priors over parameters

C and D were kept constant (recall µ1 = Cµ2 and L = Dµ2).

We assigned flat, uninformative, Uniform(1, 100) and Uniform(0, 10) priors for

the hyperparameters η = (ν, σ) respectively. These priors are conservatively wide to
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ensure we do not miss sampling any areas of high likelihood in the parameter space.

The full model structure is therefore

ν ∼ Uniform(1, 100) (3.2)

σ ∼ Uniform(0, 10) (3.3)

µ2,i|ν, σ ∼ Lognormal(log(ν), σ2) (3.4)

Ci ∼ Beta(1, 2) (3.5)

Di ∼ Beta(1, 5) (3.6)

log-likelihood ∼
∑
i

(Equation 2.6) (3.7)

where subscript i denotes the ith player in our sample.

The marginal posterior distribution for the hyperparameters, given all of the data,

may be written in terms of expectations over the individual players’ posterior distri-

butions computed using the exponential varying-hazard model in Chapter 2 (see e.g.,

Brewer & Elliott, 2014),

p(ν, σ|{di}) ∝ p(ν, σ)
N∏
i=1

E

[
f(µ2,i|ν, σ)

π(µ2,i)

]
(3.8)

where f(µ2,i|ν, σ) is the Lognormal(log(ν), σ2) prior applied to µ2 for the ith player,

and π(µ2,i) is the Lognormal(log(25), 0.752) prior that was originally used to calculate

the posterior for the ith player. The expectation term (i.e., each term inside the

product) can be approximated by averaging over the posterior samples for that player.

3.2.2 Data

The data used with the hierarchical model again come from Statsguru on the Cricinfo

website. As the exponential varying-hazard model is able to pinpoint batsmen who

are susceptible at the beginning of their innings, the hierarchical model was applied

to opening batsmen.

In most conditions, the first overs of a team’s innings are considered the most
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difficult to face, as the ball is new and batsmen are not yet used to the pitch and

weather conditions. In order to counter these difficult batting conditions, it may be

expected that opening batsmen begin their innings batting closer to their peak ability

than a middle or lower-order batsman. For the purposes of this discussion, in order to

counter these difficult batting conditions, we assume that an ideal opening batsmen

should be more ‘robust’, in the sense that the proportional difference between their

initial and ‘eye-in’ batting abilities is smaller than most players (i.e. a high value for

parameter C). This is by no means a global restriction imposed on opening batsmen

around the world; in the past there have undoubtedly been great opening batsmen

who were known to be vulnerable early in their innings. However as the exponential

varying-hazard model gives us the ability to quantify initial and ‘eye-in’ abilities, it

seems a reasonable assumption in the present context.

Given the author’s nationality, the hierarchical model was applied to make gen-

eralised inference about opening batsmen who have represented New Zealand. As

opening has been a position of concern for New Zealand for some time, all opening

batsmen to have played for the national side since 1990 were included in the study.

Any player who opened the batting for New Zealand for at least half of their Test

innings during this time period was deemed an opening batsman and included in the

hierarchical analysis1. The career records for the opening batsmen included in the

analysis are presented in Tables A.1 and A.2 in Appendix A.

All innings for each batsman were included in the data set, even those that were

not spent opening the batting. This was done under the assumption that players who

are selected to open the batting are done so as they inherently possess batting traits

and characteristics that coaches perceive to be desirable for opening. This assumes

that a player who is a regular opening batsman, but has also spent some time batting

at other top order batting positions, is unlikely to bat drastically differently between

the two batting positions. The data set is up to date as of the completion of the 2017

home Test series versus Bangladesh (24th January 2017)2.

1This includes currently active players, Martin Guptill, Hamish Rutherford, Tom Latham and
Jeet Raval.

2The next scheduled Test match for New Zealand is on 8th March 2017.
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3.3 Results

3.3.1 Hyperparameter summaries

New Zealand opening batsmen were analysed separately using the exponential varying-

hazard model from Chapter 2. Posterior summaries were generated for each player

and are presented in order of Test debut in Tables A.3 and A.4 (see Appendix A).

Due to several players appearing in just a handful of matches, some uncertainties are

fairly large.

Combining the posterior samples for each player and applying a Metropolis-

Hastings algorithm, allows us to make posterior inferences regarding hyperparameters

ν and σ, using the result from Equation 3.8. As the hyperpriors for both ν and σ were

very conservative, the Metropolis-Hastings algorithm was run for a large number of

iterations (one million). This allowed plenty of time for mixing and sampling from

the joint distribution for both ν and σ. Both chains have a fairly low autocorrelation

given the large number of iterations, and appear to have converged sufficiently as indi-

cated by the traceplots for ν and σ, presented in Figures 3.1 and 3.2. As our starting

point appears to be fairly typical of the joint posterior distribution, no burn-in period

was necessary (Meyn & Tweedie, 1993).

The joint posterior distribution for ν and σ is shown in Figure 3.3 and repre-

sents just a small proportion of the area covered by the Uniform prior distributions,

suggesting the data contained a lot of information about the hyperparameters.

The marginal posterior distribution for ν is shown in Figure 3.4, with the posterior

predictive distribution for µ2 overlaid. Our inference regarding ν can be summarised

as: ν = 29.12+3.32
−3.14, while σ can be summarised as: σ = 0.52+0.10

−0.07. These results

suggest our subjectively assigned Lognormal(log(25), 0.752) prior in Chapter 2 was

reasonably close to the actual frequency distribution of µ2 values among this subset

of Test cricketers.



38 Chapter 3. Hierarchical analysis of New Zealand opening batsmen

Figure 3.1. Traceplot for ν.

Figure 3.2. Traceplot for σ.
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Figure 3.3. Joint posterior distribution for ν and σ describing the distribution of µ2

values among the sample of New Zealand opening batsmen. The pink square indicates
the position of the Lognormal(log(25), 0.752) prior.

Figure 3.4. Marginal posterior distribution for ν with the predictive distribution for
µ2 overlaid.
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3.3.2 Prediction for the next New Zealand opening batsman

Given the data, d, and hyperparameters η = (ν, σ), we are able to make an informed

prediction regarding the batting abilities, θ′ = (µ1, µ2, L), of the ‘next’ opening bat-

man to debut for New Zealand, using the result of Equation 3.9

p(η, θ′|d) ∝ p(η) p(θ′|η) p(d|θ′, η)

= p(η)
N∏
i=1

f(θ′|η) p(d|θ′)

∴ p(θ′|d) ∝
∫
p(η)

N∏
i=1

f(θ′|η) p(d|θ′) dη. (3.9)

where θ′ is obtained by marginalising over the hyperparameters using MCMC.

Our predicted estimates assume that the next player to debut is fairly typical of

past openers and can be summarised as: µ1 = 10.1+11.7
−5.8 , µ2 = 29.1+20.6

−12.1 and L =

3.2+5.9
−2.4, presented in Table 3.1. For comparison, individual parameter estimates and

uncertainties for all New Zealand openers in the data set are contained in Tables A.3

and A.4 in Appendix A.

The opening batsmen included in this study accounted for 727 separate Test in-

nings. Given this moderate sample size, the uncertainties are somewhat large, al-

though with more data we would expect more precise inferences and predictions.

Of course, this prediction must be taken with a grain of salt, as the New Zealand

cricketing landscape has changed drastically since the 1990s. The ever-increasing

amount of money invested in the game allows modern-day players to focus on being

full-time cricketers. The structure of the domestic cricket scene has also improved,

including better player scouting and coaching, resulting in the best local talents being

Table 3.1: Predictions for the batting abilities of the next opening batsman to debut
for New Zealand.

µ1 68% C.I. µ2 68% C.I. L 68% C.I.

NZ Opener 10.1+11.7
−5.8 [4.3, 21.8] 29.1+20.6

−12.1 [17.0, 49.7] 3.2+5.9
−2.4 [0.8, 9.1]
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nurtured from a young age. Nevertheless, the prediction does highlight the difficulties

New Zealand has had in the opening position. Few batsman with an ‘eye-in’ average,

let alone a career average, of 29.1, would make many international sides on batting

ability alone.

Figure 3.5 depicts the point estimates on the µ1 – µ2 plane for all New Zealand

openers analysed in the study. All players fall within the 68% and 95% credible

intervals of the prediction for the next opener, with the exception of Mark Richardson.

Unsurprisingly, this suggests almost all players analysed are typical of New Zealand

opening batsmen.

Since his debut in 2001, Richardson has widely been considered New Zealand’s

only world-class Test opener to play in the current millennium. Figure 3.5 certainly

Figure 3.5. Point estimates for all analysed batsmen on the µ1 – µ2 plane. The
prediction for the next New Zealand opening batsmen is represented by the black
dot, including 68% (inner) and 95% (outer) credible intervals (dotted ellipses).
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suggests Richardson is class apart from his compatriots, as he is the only player to fall

outside the 68% and 95% credible intervals. Estimates for both Richardson’s initial

and ‘eye-in’ abilities are also considerably higher than the predicted abilities of the

next opening batsman

P (µ1 Richardson > µ1 Predicted|d) = 0.91

P (µ2 Richardson > µ2 Predicted|d) = 0.81

In fact, Richardson’s very high point estimate for µ1 = 30.7, suggests he begins

his innings batting at least as well as the typical New Zealand opener, even once

they have their ‘eye-in’, further highlighting the difficulty New Zealand has had with

selecting capable opening batsman and/or Richardson’s talent.

P (µ1 Richardson ≥ µ2 Predicted|d) = 0.51

Another player of interest is Tom Latham, whose batting abilities lie on the edge

of the 68% credible interval on the µ1 – µ2 plane. In the last few years, Latham

has established himself as New Zealand’s current premier opening batsman in Test

matches, reflected by the high estimate for his ‘eye-in’ batting ability.

Both Richardson and Latham have very similar ‘eye-in’ abilities (as seen in Table

3.2), suggesting Latham certainly has the talent to become one of New Zealand’s

stand-out modern-day openers.

P (µ2 Richardson > µ2 T.Latham|d) = 0.47

However, it is Richardson’s very high initial batting ability that sets him apart

from other opening batsmen in the data set. Revisiting our assumption that an ideal

opening batsman should have a high initial batting ability in order to counter the

difficulties of facing the new ball, then Richardson edges Latham as the superior
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Table 3.2: Parameter estimates and uncertainties for Mark Richardson and Tom
Latham using the exponential varying-hazard model.

Player µ1 68% C.I. µ2 68% C.I. L 68% C.I.

M. Richardson 30.7+8.5
−8.8 [21.9, 39.2] 46.1+6.8

−5.6 [40.5, 52.9] 3.6+6.9
−2.8 [0.8, 10.5]

T. Latham 13.5+7.1
−4.7 [8.8, 20.6] 46.9+8.9

−7.0 [39.9, 55.8] 5.4+5.7
−3.5 [1.9, 11.1]

opener given his very high initial effective average:

P (µ1 Richardson > µ1 T.Latham|d) = 0.93

This also suggests that Richardson is a very ‘robust’ batsman, in the sense that

his initial batting ability is closer to his ‘eye-in’ batting ability than most other New

Zealand openers. Latham on the other hand appears to be somewhat vulnerable early

in his innings, compared with how well he bats once he has his ‘eye-in’, as indicated

by the estimates for parameter C in Figure 3.7.

P (CRichardson > CPredicted|d) = 0.83

P (CT.Latham > CPredicted|d) = 0.39

Therefore, working on improving Latham’s early innings batting may be the key

for New Zealand cricket as he continues to build on the promising start made to his

career as an opening batsman.
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Figure 3.6. Predictive hazard functions in terms of effective average, µ(x), for Tom
Latham, Mark Richardson and the next New Zealand opener.

Figure 3.7. Histograms representing the marginal posterior distributions for param-
eter C for Tom Latham, Mark Richardson and the next New Zealand opener.
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Developing more flexible models

4.1 Overview

The exponential varying-hazard model detailed in Chapter 2 does a reasonable job at

identifying batsmen who are especially capable or vulnerable early in their innings,

compared with other players. However, as discussed in Section 2.4, the constraints

imposed on this model also result in several limitations which are unrealistic within

a cricketing context.

The main limitation of concern is that it is not realistic to believe that a batsman’s

ability monotonically increases over the course of their innings, before plateauing after

a certain score. There are countless examples of batsmen taking a more cautious

approach before passing significant milestones or becoming far more carefree once

passing them. It is common to see opposition captains attempt to take advantage of

batsman who are nearing these milestones, by setting more aggressive fields while the

batsman may be thinking of their score, rather than giving their full attention to the

ball being bowled at them.

This sort of behaviour certainly suggests there is likely some sort of temporal

variation in ability between scores. Therefore to capture these changes in ability,

our models must be afforded more flexibility in the parameterisation of the hazard,

H(x), and effective average, µ(x), functions. In Sections 4.2 and 4.3 two models are

45
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outlined, each capturing temporal variation in batting ability during an innings in

different ways.

The first model (Section 4.2) uses a Gaussian function to capture this variation

by allowing for a temporary period of diminished or enhanced batting ability. This

model uses fewer parameters but is also limited to only identifying a single period of

variation in ability (hereafter referred to as the Gaussian hazard model).

The second model (Section 4.3) uses autoregressive terms to allow for more flexi-

bility in the hazard function (hereafter referred to as the AR(1) hazard model). This

model is much more flexible than the Gaussian hazard model, however requires far

more parameters to be fitted, which can result in somewhat erratic hazard functions

and excessively wide credible intervals.

Each model is applied to the same group of modern-day batsmen in Section 4.4

to determine whether or not any players exhibit significant score-related variation in

ability, particularly when nearing scores of significance, such as during the ‘nervous

90s’.

4.2 The Gaussian hazard model

A simple modification was made to the exponential varying-hazard model to allow for

more flexibility in the effective average and hazard functions. Under the new model

specification, the effective average function, µ(x), is able to exhibit temporary bumps

or dips during a batsman’s innings. This was achieved by multiplying the effective

average function from the exponential varying-hazard model, µ(x;C, µ2, L), by the

exponential of a Gaussian function. Such a model is not a drastic step away from the

initial exponential varying-hazard model, but does allow for the identification of the

strength and timing of any temporal variation in ability around particular scores, if

it exists, for a given player.

The particular Gaussian functions under consideration contain three parameters:

a strength parameter k, controlling the amplitude of the function, a width parameter

φ, controlling the width of the function, and m, representing the midpoint of the func-
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Figure 4.1. Examples of Gaussian functions with differing strengths, widths and
midpoints.

tion (see Figure 4.1 for examples of plausible Gaussian functions). Mathematically,

the Gaussian function can be written as

g(x; k, φ,m) = −k exp

(
−1

2φ2
(x−m)2

)
(4.1)

The Gaussian function is often written with k, rather than −k preceding the

exponential. This makes no practical difference, the −k simply indicates our default

assumption is that players will tend to exhibit periods of decreased batting ability,

rather than periods of increased ability.

4.2.1 Model structure

Parameterising the hazard function

The model likelihood follows the same derivation as that of the exponential varying-

hazard model in Chapter 2. The only change required to implement the Gaussian
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hazard function is to re-parameterise the effective average function to include the

three new parameters (k, φ, m) used to produce the Gaussian element of the model.

Like the exponential varying-hazard model, the hazard function takes the form

H(x) =
1

µ(x) + 1
, (4.2)

and relies on our parameterisation of the effective average function, µ(x).

If we define the effective average function from the exponential varying-hazard

model, µ(x;C, µ2, L), as the ‘underlying effective average’, the Gaussian hazard model

is obtained by multiplying the underlying effective average by the exponential of a

Gaussian function. This gives the effective average for the Gaussian hazard model

µ(x;C, µ2, D, k, φ,m) =

[
µ2 + µ2(C − 1) exp

(
− x

Dµ2

)]
× exp(g(x; k, φ,m)). (4.3)

To maintain positivity, the effective average function was modelled on the log-

scale. Now, instead of multiplying the underlying effective average by the exponen-

tial of a Gaussian function, a Gaussian function from Equation 4.1 was added to

log[µ(x;C, µ2, L)]

log [µ(x;C, µ2, D, k, φ,m)] = log

[
µ2 + µ2(C − 1) exp

(
− x

Dµ2

)]
+ g(x; k, φ,m).

(4.4)

New effective average curves were produced, by back-transforming the effective

average function by taking the exponential, which now allow for small deviations in

batting ability during a batsman’s innings. Examples of effective average functions

allowed under the Gaussian hazard model can be seen in Figure 4.2, which combine the

effective average functions from Figure 2.1 in Chapter 2, with the Gaussian functions

from Figure 4.1.

Therefore, the Gaussian hazard model is able to account for any significant fluc-

tuations in batting ability over the course of a player’s innings. These deviations

in ability can be large or small in terms of both amplitude and the range of scores
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Figure 4.2. Examples of effective average functions, µ(x;C, µ2, D, k, φ,m) allowed un-
der the Gaussian hazard model, with varying levels and timings of temporal deviation
in batting ability.

spanned. For example, a batsman who is notorious for being dismissed in the ‘ner-

vous 90s’ would be expected to have an effective average function which exhibits a

decline around scores of 90. This deviation in ability would present itself as a negative

Gaussian function (i.e. a positive value for k) across the range of these scores.

Under this model, we still assume that the underlying effective average is a mono-

tonically increasing function, therefore our constraint that a batsman’s ‘eye-in’ effec-

tive average is larger than their initial effective average, µ1 ≤ µ2, remains. Likewise,

the assumption that the transition between the two batting states is no larger than

the batsman’s ‘eye-in’ effective average, L ≤ µ2, is still enforced.

While the Gaussian function now allows the model to account for some temporal

variation in batting ability, it is still unable to directly pick up on instances where

batting may become harder due to a change in bowling or deterioration in local pitch

and weather conditions. The model’s real advantage lies in identifying the strength

and timing of any systematic score-based deviations in batting ability, which may be
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a result of a change in concentration levels due to a player’s mood (Totterdell, 1999).

However, the model may indirectly pick up on bowling-related deviations in abil-

ity. For example, in almost every Test innings1, the fielding side will opt to open

the bowling with pace bowlers. Therefore, opening batsmen will tend to spend the

majority of their early innings facing seam bowling, rather than spin. If the fielding

side is unable to dismiss the opening batsmen cheaply, they may turn to spin once

the batsmen have scored a moderate amount of runs, perhaps between 20 and 40. In

this case, it may not be unrealistic to see an opening batsman exhibit a deviation in

ability around scores in this range, which could hypothetically be a result of a change

of bowling type.

Likewise, the model may also indirectly identify deviations in ability which are

brought about by a change in tactics from the fielding team. As previously mentioned,

there are plenty of examples of batsmen taking a more cautious approach before

passing significant milestones, or becoming far more carefree once passing them. The

model should be able to identify, (a) batsmen who frequently succumb to the pressure

exerted by aggressive fields that are sometimes set to players nearing a significant

score, and (b) batsmen who often give their wicket away once passing a significant

score.

Prior specification

Once again, to formally specify the model, priors need to be assigned to each of the

model parameters.

The priors for parameters C, µ2 and D were chosen to remain the same as in

the exponential varying-hazard model in Chapter 2. While it is likely that a player’s

hazard function exhibits temporal variation batting ability, it is difficult to directly

translate our cricketing knowledge into informative priors for parameters k, φ and

m. Therefore, relatively wide, conservative priors were assigned to each of these

parameters, with each prior chosen to be independent of the priors on all other model

1With the possible exception of Test matches played on the spin-friendly, sub-continental pitches
found in the likes of India, Sri Lanka and Bangladesh.
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parameters.

To allow for reasonable fluctuations in ability in both directions (i.e. either an

increase or decrease in batting ability at certain scores), a Uniform(-1, 1) prior was

chosen for k. Likewise, to allow for both short and long periods of temporal variation

in ability, a fairly wide Uniform(0, 20) prior was chosen for φ.

As the midpoint of the Gaussian function must coincide with a number of runs

scored, m is restricted to the interval [0,∞). Since the highest individual score made

in a Test is 400 not out2, a very wide Uniform(0, 400) prior was assigned for m to

allow for fluctuations in ability to occur at any stage during a batsman’s innings.

Therefore, the overall Bayesian model specification for the Gaussian hazard model

is

µ2 ∼ Lognormal(log(25), 0.752) (4.5)

C ∼ Beta(1, 2) (4.6)

D ∼ Beta(1, 5) (4.7)

k ∼ Uniform(−1, 1) (4.8)

φ ∼ Uniform(0, 20) (4.9)

m ∼ Uniform(0, 400) (4.10)

log-likelihood ∼ Equation (2.6) (4.11)

Implementing the Gaussian hazard model

The priors assigned to k, φ and m are most likely far too conservative; realistically

there are no players with enough data at scores of 200+ to be confident of an increase

or decrease in ability at such high scores. Very few players pass the milestone of a

double century more than once, let alone at all during their entire career. Instead, we

expect any meaningful inference to be made at scores between 0 and just past 100,

where the majority of our data lie.

Like the exponential varying-hazard model, the nested sampling algorithm that

2Scored by Brian Lara for the West Indies vs. England in 2004.



52 Chapter 4. Developing more flexible models

uses Metropolis-Hastings updates (Skilling, 2006) was used for the Gaussian hazard

model. However, a consequence of using such wide, uninformative priors is that the

nested sampling algorithm must run for a larger number of iterations to effectively

compress the parameter space beyond the posterior. Again, 1000 nested sampling

particles were generated for each player, with 1000 MCMC steps per iteration.

While this model has three more parameters than the exponential varying-hazard

model, the total number of parameters (6) is still low, meaning a sampling tech-

nique such as nested sampling is still overly complex for the Gaussian hazard model.

However, we are not only aiming to determine whether a player exhibits temporal

variation in batting ability, but also which model best captures this variation. Nested

sampling allows us to easily compare these more flexible models using the marginal

likelihoods, which is a primary result of the nested sampling algorithm.

4.3 The AR(1) hazard model

A second solution to affording the effective average and hazard functions increased

flexibility, is to allow for a fluctuation in ability at each individual score. Such a model

allows for more flexibility than the Gaussian hazard model, as temporal variation in

ability is no longer restricted to a particular range of scores, bounded by the fitted

Gaussian function.

This increased flexibility is achieved by estimating the underlying effective, average

function, µ(x;C, µ2, D), in the same manner as the exponential varying-hazard model,

as well as estimating a unique parameter, sx, for each score, x, where sx indicates the

proportional deviation in batting ability at score x. For example, a value of s55 = 2,

implies that a player bats with twice their underlying ability when on a score of 55.

A batsman’s effective average function can then be constructed by multiplying the

underlying effective average function, µ(x), by each unique score parameter, sx, as

seen in Figure 4.3. Therefore, under the assumptions of this model, we would estimate

batting abilities for scores 0 to 99, by using 100 independent score parameters, {sx} =

{s0, ..., s99}, as well as parameters C, µ2 and D.
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Figure 4.3. Example of an underlying effective average function, µ(x), which has
also been multiplied by a unique sx parameter at each score, producing an effective
average that varies with score.

Clearly, this model requires a large number of parameters to be estimated, which is

both a benefit and burden in terms of our estimation of batting ability. On one hand,

it allows for far more fluctuation in ability than any other model we have developed.

However, given the large number of parameters to be estimated, it can also lead to

large uncertainties and unreasonable fluctuations in the estimation of the effective

average and hazard functions.

Redefining the sx terms

Similar to the limitations of Kimber & Hansford (1993), these uncertainties in ability

will become increasingly large as the data become more scarce at higher scores. Ad-

ditionally, as the set of unique score parameters, {sx}, are virtually unrestricted, the

resulting estimates for the effective average and hazard functions will take estimates

that fit too conveniently to the data.

Over the course of a player’s innings, it is not reasonable to believe that batting
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ability will fluctuate so excessively from score to score. Obviously, how well a player

is batting on a score of 20 is going to have some impact on how well they are batting

on a score of 21 and 22, especially since runs are not always scored in singles. In

fact, as runs are often scored in boundaries (in allotments of 4 or 6 runs), a batsman

who is currently on 20 runs, is just one shot away from any score between 21 and

26. Therefore, it makes sense to impose a restriction on the model, such that there

is some sort of distance-based correlation between the unique score parameters, sx.

Information theory and maximum entropy tell us that where a constraint is im-

posed on a probability distribution, the model which is most similar to the original

model that satisfies the new constraint, should be chosen (Jaynes, 1957; Caticha &

Giffin, 2006). In this case, specifying sx as an autoregressive (AR) process allows

us to continue treating each score-based deviation in ability as a random process,

but also restricts the sx terms to be linearly dependent on previous terms (Sivia &

Skilling, 2006).

Defining yx as an AR(1) process (an autoregressive process with an order of one)

gives

yx = λ+ α(yx−1 − λ) + βnx. (4.12)

Under this definition, λ is the stationary mean of the process (a constant), α is the

parameter which determines the temporal dependence between the sx terms, nx are

white noise terms and β is the variance of these noise terms.

As sx represents the deviation in a player’s batting ability in terms of a proportion

of their underlying ability at score x, all sx terms should be restricted to the interval

[0,∞). Therefore, the sx terms were modelled as an AR(1) process on the logarithmic

scale with the stationary mean λ, set equal to 0, giving

log(sx) = αlog(sx−1) + βnx. (4.13)
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Under this definition, the AR(1) process has the following properties

E [log(sx)] = 0, Var [log(sx)] =
β2

1− α2
. (4.14)

Now, instead of sx being allowed to vary freely in the parameter space, each sx

term has some sort of conditional dependence with previous sx terms, controlled by

the parameter α, defined by

α = exp

(
−1

τ

)
, (4.15)

where τ is the decay time, representing the number of future terms that are informed

by a previous sx term. Rearranging Equation 4.15 gives

τ =
−1

log(α)
. (4.16)

For example, α = 0.9 gives a value of τ ≈ 10, implying the value of sx at a

particular score informs the values of terms sx+1, sx+2, ..., sx+9 and sx+10. That is,

a player’s batting ability at a score of 20 will inform batting ability at scores 21, 22,

..., 29 and 30.

4.3.1 Model structure

Again, the model likelihood for the AR(1) hazard model is the same as that of the

exponential varying-hazard model in Chapter 2, as is the underlying effective average

function, µ(x;C, µ2, D). To fully define the AR(1) hazard model, the autoregressive

terms (the sx terms) need to be included in the full specification of the effective

average function.

As sx was modelled on the logarithmic scale, the full specification of the effective

average function is

µ(x;C, µ2, D, {sx}) =

[
µ2 + µ2(C − 1) exp

(
− x

Dµ2

)]
× sx (4.17)
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where {sx} comes from Equation 4.13.

Since the underlying effective average function, µ(x;C, µ2, D), remains unchanged

from the exponential varying-hazard model, the constraints µ1 ≤ µ2 and L ≤ µ2 are

still imposed. However, given the flexibility in the model afforded by the set of {sx}

values, it is technically possible that instances may arise where the estimate for a

player’s effective average at a score 0 is actually higher than their estimated effective

average at a score where they they are deemed to have their ‘eye-in’. It would however,

require a highly unrealistic data set for such a situation to arise.

Prior specification

Like the Gaussian hazard model, the priors for C, µ2 and D were kept the same as

in the exponential varying-hazard model. Priors for parameters α, β and n, which

control the sx terms, were chosen to be independent of priors assigned to all other

model parameters.

In order to allow for extended periods of increased or decreased batting ability,

while maintaining a steady underlying ‘eye-in’ effective average, the sx terms were

chosen to be a stationary process. Imposing the constraint |α| ≤ 1 ensures the AR(1)

process will be stationary and will not exhibit rapidly oscillating values (Hamilton,

1994). Therefore, a Beta(4, 1) prior was assigned to α, emphasising values closer

1. This prior represents a mean value of α = 0.8, implying a decay time τ = 4.48,

indicating temporal dependence in ability between scores within roughly 4 runs of

each other.

An exponential prior with mean = 0.1 was assigned to β. This prior allows for

the deviation in ability from score to score to change by up to approximately 10%,

which seems reasonable in the context of the effective average function.

Finally, a Normal(0, 1) prior was assigned to the set of noise parameters, {nx}.

For a given particle in each nested sampling iteration, sx terms are constructed using

common values for α and β. What sets each sx term apart is its specific noise

parameter, nx. Rather than using nested sampling to specifically evolve the sx terms



4.3. The AR(1) hazard model 57

(as the model which uses entirely independent sx terms does), the AR(1) hazard

model evolves the parameters used to construct the sx terms, α, β and {nx}. As α

and β are constant for all sx terms, any temporal variation in batting ability identified

by the model, is being identified by the set of noise parameters, {nx}.

Under these prior specifications, the AR(1) hazard model has a full Bayesian

specification of

µ2 ∼ Lognormal(log(25), 0.752) (4.18)

C ∼ Beta(1, 2) (4.19)

D ∼ Beta(1, 5) (4.20)

α ∼ Beta(4, 1) (4.21)

β ∼ Exponential(mean = 0.1) (4.22)

{nx}
iid∼ Normal(0, 1) (4.23)

log-likelihood ∼ Equation (2.6) (4.24)

Implementing the AR(1) hazard model

For the analysis of individual players, the AR(1) hazard model was chosen to estimate

401 noise parameters (one for each score from 0 and 400, inclusive). Unlike the ex-

ponential varying-hazard and Gaussian hazard models, using classic nested sampling

will be computationally inefficient and possibly inaccurate, given the large number of

parameters to be estimated. As a result of the high dimensional parameter space, it is

plausible that likelihood functions which exhibit multimodality exist, which can be a

problem when using standard nested sampling methods. Therefore, to deal with any

issues which may arise due to the large number of parameters in the AR(1) hazard

model, a C++ implementation of the diffusive nested sampling algorithm (Brewer et

al., 2011; Brewer & Foreman-Mackey, 2016) (see Section 1.2.1) which calls Julia to

evaluate the likelihood function was used.

The diffusive nested sampling algorithm was run using 5 particles, with enough

nested sampling iterations to adequately evolve each particle. Unlike the nested sam-
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pling methods used for the exponential varying-hazard and Gaussian hazard models,

using a larger number of particles is not advised, as there are over 400 model pa-

rameters to evolve within each nested sampling particle. Nested sampling levels were

created every 10000 likelihood values above the current likelihood threshold, with a

maximum of 100 levels created. All other model tuning parameters were kept constant

as per the recommendations of Brewer & Foreman-Mackey (2016).

4.4 Results

4.4.1 Model testing

In order to establish confidence in our flexible models’ abilities to accurately capture

temporal changes in batting ability, a fake data set was generated to test each of the

models. In particular, the data set contained scores from a ‘player’ who exhibited an

extreme case of the ‘nervous 90s’ over the course of a long career.

Figure 4.4. The underlying effective average function, µ(x), from which the fake data
set was generated.
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The synthetic data were generated by constructing a hazard function using ar-

bitrary values for µ1, µ2 and L, in this case values of 10, 45 and 5 were chosen

respectively. To ensure a disproportionate amount of scores in the 90s were present

in the data set, a deviation in ability was imposed at scores 90 to 99. The resulting

effective average function for the fake player can be seen in Figure 4.4. Scores were

then simulated using the hazard function in Figure 4.5, with not out scores assigned

randomly with a constant probability of 10%.

The resulting data set contained 1000 innings, which included 109 not out scores.

The fake player averaged 39.6, with a top score of 245. Figure 4.6 depicts the frequency

distribution of the scores in the data set, highlighting the difficulty the fake player

had with getting through the 90s without being dismissed.

Using each of the Gaussian and AR(1) models, the data set was analysed to ensure

the models are able to sufficiently identify the deviation in batting ability at scores

in the 90s. For comparison, the data set was also analysed using the exponential

varying-hazard model.

Figure 4.5. The underlying hazard and probability mass functions for the fake data
set.
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Figure 4.6. Histogram of scores from the simulated fake data set. Scores in the 90s
are highlighted in red.

The Gaussian hazard model

The fake data set was analysed using the Gaussian hazard model, with samples drawn

from the joint posterior distribution to obtain an estimate for the effective average

function, for the fake player. Figure 4.7 suggests that the Gaussian hazard model

did a reasonable job at capturing the temporal variation, indicating a deterioration

in batting ability while on scores in and near the 90s.

The posterior parameter summaries for both the Gaussian hazard and exponential

varying-hazard models are presented in in Table 4.1. As expected, the point estimate

for m is during the 90s and the estimate for k is close to 1, indicating a large deviation

Table 4.1: Parameter point estimates for the fake data set for both the Gaussian
hazard model and exponential varying-hazard model.

Model µ1 µ2 L k φ m
Gaussian hazard 12.7 50.2 5.8 0.95 6.7 95.8
Exponential varying-hazard 12.6 46.9 4.9 - - -
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Figure 4.7. Predictive hazard function in terms of effective average, µ(x), for the fake
data using the Gaussian hazard and exponential varying-hazard (EVH) models. The
underlying data distribution that generated the fake data is overlaid.

in ability. The summaries suggest the Gaussian hazard model has compensated for

the deviation in ability in the 90s by overestimating the value for the fake player’s

‘eye-in’ ability, µ2, and speed of transition between states, L, in comparison to the

exponential varying-hazard model.

The AR(1) hazard model

The fake data set was then analysed using the AR(1) hazard model, producing another

estimate for the fake player’s effective average function. As anticipated, the estimate

for the effective average curve under this model contains more fluctuations in ability

than the other two models.

Figure 4.8 suggests that like the Gaussian hazard model, the AR(1) hazard model

is also able to identify a significant decrease in ability during scores in the 90s. The

model also appears to suggest that the fake player exhibits periods of increased batting

ability at scores in the 70s and 80s and across a range of scores between 100 and 150.
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Figure 4.8. Predictive hazard function in terms of effective average, µ(x), for the
fake data using the AR(1) hazard (including 68% credible intervals) and exponential
varying-hazard models. The underlying data distribution that generated the fake
data is overlaid.

Interestingly, the model also identifies several periods of increased ability during scores

in the 20s and 40s, although these deviations are not as significant as the decrease in

ability during the 90s.

To indicate whether or not these flexible models have successfully identified score-

based temporal deviations in ability, the empirical hazard function for the fake data

set was derived from the Kaplan-Meier estimator of the survival function (Kaplan &

Meier, 1958).

A plot of the empirical hazard function suggests both the AR(1) and Gaussian haz-

ard models have performed similarly in identifying score-based temporal deviations

in batting ability. By definition, the empirical function becomes trivial at higher

scores, as it eventually assigns a probability of dismissal of 1 at the player’s highest

score (assuming their high score is not a not out score), in this case, 245. However,

it is clear from Figure 4.9 that both models are accurately identifying the temporal

deviation in batting ability during the 90s.
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Figure 4.9. The empirical hazard function (grey) for the fake data with the estimated
hazard function for the AR(1) and Gaussian hazard models overlaid.

The marginal likelihoods for each of the models fitted to the fake data are pre-

sented in Table 4.2. As expected the more flexible models are heavily favoured over

the more rigid exponential varying-hazard model. With the highest marginal likeli-

hood, the Gaussian hazard model appears to be the model most likely to apply to the

data set, and assigns higher probability to it than the AR(1) hazard and exponential

varying-hazard models. While the AR(1) hazard model can account for more flexibil-

ity in the data, it must assign some probability to outlandish and highly improbable

datasets, resulting in a lower marginal likelihood.

Table 4.2: Marginal likelihoods for each of the three models fitted to the fake data

Model log(Z)
Gaussian hazard −4114.06
AR(1) hazard −4118.56
Exponential varying-hazard −4129.01
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4.4.2 Data

In order to reliably test each of the three models, a larger data set was required

than both the small selection of retired players analysed in Chapter 2 and the New

Zealand opening batsmen analysed in Chapter 3. As the models we have developed

are focussed on batting, an appropriate data set of batsmen was selected for analysis

under the assumptions of each of the three models.

The chosen data set consists of all international3 players who have averaged more

than 40 with the bat from at least 30 innings since the year 2000. In total, 47 players

met this criteria, accounting for 7559 individual innings between them. The Test

match batting records for each of the players in the data set are presented in Table

B.1 in Appendix B.

In addition to these 47 players, former Australian opener Michael Slater was also

analysed and presented as a case study, as a player who was notorious for being

dismissed in the 90s. Slater played the majority of his career during the 1990s, and

was dismissed in the 90s on 9 of the 23 occasions he scored at least 90 runs, making

him an interesting prospect in the context of the Gaussian and AR(1) hazard models.

4.4.3 Analysis using the Gaussian hazard model

The Gaussian hazard model was run using the nested sampling algorithm for all

players in the data set and samples were drawn from the posterior distribution, for

each player. However, unlike the exponential varying-hazard model, it is not possible

to simply present the posterior mean or median parameter estimates.

The main issue that arose when fitting effective average curves for the Gaussian

hazard model, was selecting appropriate point estimates for k, φ and m. For the

parameter m, most players tend to have one or two values that m gravitates towards,

with the remainder of the posterior samples spreading m fairly evenly across the [0,

400] interval. Due to the wide posterior distribution for m, applying the approach of

3‘International’ referring to countries with Test nation status (Australia, Bangladesh, England,
New Zealand, Pakistan, South Africa, Sri Lanka, West Indies, Zimbabwe).
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estimating the parameters by taking the posterior median, no longer provides valid

results.

The posterior samples for m, for former English batsman Ian Bell are presented

in Figure 4.10. It is clear that the Gaussian hazard model has inferred that Ian Bell

likely exhibits some sort of temporal deviation in ability at scores in the 40s. However,

if we were to take the posterior median of m for these samples, our estimate would

suggest that Bell exhibits a deviation in ability at scores around 196, which is clearly

not what the posterior distribution is indicating.

Figure 4.10. Histogram of posterior samples for m, for Ian Bell.

Furthermore, if we consider the posterior distribution for m, for former Sri-Lankan

wicket-keeper and batsman, Kumar Sangakkara (Figure 4.11), we can see there are

three ranges of scores where Sangakkara may exhibit a temporal deviation in ability

(∼70, ∼120, ∼170). However, from the marginal posterior distribution for m alone,

it is impossible to know whether each of these score ranges are implying a decrease or

increase in batting ability (i.e. positive or negative values for parameter k). Likewise,

the deviation in ability across each score range will likely have unique widths (i.e.
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varying estimates for the parameter φ).

The joint distribution for k and m, for Sangakkara (Figure 4.12), indicates that

posterior samples with values m ≈ 70, k tend to take positive values, suggesting a

decrease in batting ability. On the contrary, for values m ≈ 120 and m ≈ 170, k

tends to take negative values, indicating an increase in batting ability.

Similar disparities are present between φ and m, as seen in Figure 4.13. Posterior

samples with values for m ≈ 70, tend to have values for φ consistently clustered

around 6. However, for values m ≈ 120 and m ≈ 170, φ appears to be spread across a

much wider range of values. This makes it difficult to present any information learnt

by the Gaussian hazard model in table form, as we can no longer simply take the

posterior median for each model parameter. Instead, each player must be dealt with

on a case-by-case basis.

Figure 4.11. Histogram of posterior samples for m, for Kumar Sangakkara.
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Figure 4.12. Joint posterior distribution for m and k, for Kumar Sangakkara.

Figure 4.13. Joint posterior distribution for m and φ, for Kumar Sangakkara.
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Predictive hazard functions

Rather than present the posterior inferences made by the Gaussian hazard model in

a table, it is easier to see what the model has learnt from the data by plotting the

predictive hazard function in terms of µ(x) for each player. These functions give us

a much clearer idea of what the joint distributions for k, φ and m are inferring for

each individual batsman.

Therefore, predictive hazard functions were fitted for the 15 players in the data

set for whom the Gaussian hazard model was the most likely model to apply, based

on the marginal likelihood. This group consists of five Australian and five English

batsman, along with five other batsman from the rest of the world. The predictive

hazard functions for each of these groups are presented in Figures 4.14, 4.15 and 4.16.

Additionally, each player was tested for whether or not they appear to exhibit a

case of the ‘nervous 90s’ that adversely effects their batting ability. Equation 4.25

provides probability estimates for whether a given player appears to be batting worse

when on scores in the 90s, in comparison to scores precluding and following the

90s. Estimates for each player’s mean batting ability during the 50s, 60s, 70s, 80s

and 100s were calculated for each posterior sample, and compared with their mean

batting ability in the 90s. For example, to calculate the posterior probability that a

player bats better in the 80s than in the 90s, we compute

P (µ̄80s > µ̄90s|d) ≈ 1

N

N∑
i=1

I{µ̄80s,i > µ̄90s,i}, (4.25)

for N posterior samples, where I is the indicator function that takes the value 1 if

the mean batting ability in the 80s is higher than the mean batting ability in the

90s and 0 otherwise, for the ith posterior sample. For comparison, prior probabilities

were also computed and are presented alongside the posterior probabilities in Tables

4.3, 4.4 and 4.5.

It is also worth noting that the probability estimates in Equation 4.25 are calcu-

lated on the basis of a player batting better across a particular score range, compared
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with in the 90s. For most players, there are a reasonable number of posterior sam-

ples that suggest equal ability between score ranges (this is sensitive to numerical

precision). Therefore, the estimate P (µ̄80s > µ̄90s|d) = p, certainly does not imply

P (µ̄80s < µ̄90s|d) = 1− p.

Australian batsmen

The predictive hazard functions for the five Australian batsman for whom the Gaus-

sian hazard model was the most likely model, are presented in Figure 4.14. Interest-

ingly, it appears as though three players, Simon Katich, Damien Martyn and Mark

Waugh, potentially experience a decline in batting ability as they approach a score of

100. Also of interest is the apparent transition speed between the initial and ‘eye-in’

batting abilities of Michael Clarke. Clarke does not appear to have reached an equi-

librium batting ability until scoring at least 50 runs, suggesting he takes a very long

time to completely get used to the conditions, but is a very good batsman once he

has.

Figure 4.14. Predictive hazard functions for the Gaussian hazard model in terms of
effective average, µ(x), for the Australian batsmen.
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Table 4.3: Posterior probability estimates for the five Australian batsmen, comparing
mean batting abilities during the 50s, 60s, 70s, 80s and 100s against the mean batting
ability during the 90s.

Player P (µ̄50s > µ̄90s|d) P (µ̄60s > µ̄90s|d) P (µ̄70s > µ̄90s|d) P (µ̄80s > µ̄90s|d) P (µ̄100s > µ̄90s|d)

M. Clarke 0.10 0.11 0.12 0.13 0.84

M. Hussey 0.21 0.22 0.22 0.22 0.30

S. Katich 0.36 0.36 0.35 0.35 0.49

D. Martyn 0.19 0.20 0.21 0.22 0.60

M. Waugh 0.38 0.39 0.39 0.38 0.23

Prior 0.17 0.17 0.17 0.17 0.56

The posterior probability estimates in Table 4.3 suggest there is little evidence to

believe that Clarke’s batting ability suffers from any nervousness while in the 90s.

Perhaps surprisingly, there is underwhelming support for the ‘nervous 90s’ signif-

icantly affecting batting ability, for both Simon Katich and Damien Martyn. From

Figure 4.14, both players appear to be undergoing a decrease in batting ability as

they approach 100. However, it is important to remember that the estimates for the

mean batting abilities during the 50s, 60s, 70s, 80s, 90s and 100s are derived from the

individual posterior samples, not the predictive hazard function. Given the insignif-

icant posterior probability estimates for Katich and Martyn, we can conclude that

most posterior samples estimate that both players bat better during the 90s than at

earlier scores. However, a small number of posterior samples do exhibit significant

decreases in batting ability around the 90s, dragging the predictive hazard function

down for scores in the 90s.

Furthermore, there is no evidence to suggest that either Michael Hussey’s or Mark

Waugh’s batting abilities suffer from the ‘nervous 90s’. However, unlike Katich and

Martyn, there does appear to be some weak evidence of a decrease in batting ability

once passing 100 for each of these players, as indicated by P (µ̄100s > µ̄90s|d). In terms

of the predictive hazard functions, these estimates make reasonable sense, particularly

in the context of Mark Waugh, whose predictive hazard function does appear to

decrease immediately after scoring 100 runs.
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English batsmen

Like the Australians, several English batsman appear to exhibit a decline in batting

ability while on scores in the 90s, namely Andrew Strauss and Michael Vaughan.

Oddly, both of these players also appear to peak in terms of batting ability just

before entering the 90s. Conversely, Jonathan Trott appears to exhibit an increase in

batting ability as he approaches a score of 100.

It comes as no surprise that Ian Bell appears to experience a brief period of

increased ability at scores in the 40s, as the posterior distribution for parameter

m in Figure 4.10 had a high density near these scores, perhaps indicating a real

determination from Bell to reach the milestone of 50 runs once he gets within sight.

Figure 4.15. Predictive hazard functions for the Gaussian hazard model in terms of
effective average, µ(x), for the English batsmen.

Again, like the Australians, there is no real evidence to suggest any of the English

batsman are affected by the ‘nervous 90s’. However, Andrew Strauss is similar to the

likes of Mark Waugh, in the sense that there is some weak evidence to suggest he

experiences a decrease in batting ability once passing 100 runs. This may be imply
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Table 4.4: Posterior probability estimates for the five English batsmen, comparing
mean batting abilities during the 50s, 60s, 70s, 80s and 100s against the mean batting
ability during the 90s.

Player P (µ̄50s > µ̄90s|d) P (µ̄60s > µ̄90s|d) P (µ̄70s > µ̄90s|d) P (µ̄80s > µ̄90s|d) P (µ̄100s > µ̄90s|d)

I. Bell 0.19 0.16 0.13 0.11 0.88

K. Pietersen 0.11 0.12 0.13 0.13 0.74

A. Strauss 0.28 0.31 0.34 0.37 0.16

J. Trott 0.10 0.09 0.09 0.10 0.54

M. Vaughan 0.11 0.14 0.20 0.26 0.38

Prior 0.17 0.17 0.17 0.17 0.56

that Strauss and Waugh are more prone than others to losing their concentration, or

playing a loose stroke, immediately after scoring a century.

Rest of world batsmen

The predictive hazard functions for the players from the rest of the world are presented

in Figure 4.16. Here we can see the implications of the joint distribution for k and

m, for Kumar Sangakkara (Figure 4.12), with three potential scoring areas causing

deviations in batting ability. As expected, there appears to be a slight decrease in

ability around scores of 70 for Sangakkara, followed by periods of increased ability

near scores of 120 and 170.

Other players who appear to have meaningful score-based deviations in ability

are South Africa’s Ashwell Prince and Sri Lanka’s Hashan Tillakaratne. Both players

seem to bat better when on scores around 60-80, before returning to a state of relative

equilibrium.

Figure 4.16 also contains the predictive hazard function for New Zealand opening

batsman Mark Richardson, who was analysed in detail using the exponential varying-

hazard model in Chapter 3. Richardson appears to undergo a gradual deterioration in

ability, from the point of reaching a peak batting ability at a score of approximately

20, until reaching a score of 100.
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Figure 4.16. Predictive hazard functions for the Gaussian hazard model in terms of
effective average, µ(x), for the rest of world batsmen.

Again, there is no significant evidence to suggest any players from the rest of

world group experience any difficulty while batting on scores in the 90s. Unlike the

Australian and English groups, there do not appear to be any players who exhibit a

decrease in ability once passing 100.

Table 4.5: Posterior probability estimates for the five batsman from the rest the of
world, comparing mean batting abilities during the 50s, 60s, 70s, 80s and 100s against
the mean batting ability during the 90s.

Player P (µ̄50s > µ̄90s|d) P (µ̄60s > µ̄90s|d) P (µ̄70s > µ̄90s|d) P (µ̄80s > µ̄90s|d) P (µ̄100s > µ̄90s|d)

A. Prince 0.16 0.21 0.25 0.26 0.67

M. Richardson 0.33 0.32 0.30 0.27 0.58

K. Sangakkara 0.03 0.03 0.03 0.04 0.85

V. Sehwag 0.06 0.07 0.08 0.09 0.42

H. Tillakaratne 0.24 0.27 0.28 0.28 0.50

Prior 0.17 0.17 0.17 0.17 0.56
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4.4.4 Analysis using the AR(1) hazard model

Using diffusive nested sampling, posterior samples were generated for each of the

47 players in the data set. However, given the large number of parameters in the

model, it is impractical to present the posterior parameter summaries for each player.

Instead, to effectively convey the implications of the AR(1) hazard model, predictive

hazard functions are presented for each of the batsmen for whom the AR(1) hazard

model was the most likely of the three models, based on the marginal likelihood.

Predictive hazard functions

Of the 47 players in the data set, six were identified as having the AR(1) hazard

model most likely fit their career Test match batting data. These six players have

been split up and are presented in two groups of three, the first containing three

Australian batsman, the second three batsman from the rest of the world.

Like with the Gaussian hazard model, each of these players was tested for whether

or not their batting ability suffers while in the ‘nervous 90s’, using the results from

Equation 4.25. The prior probabilities for these estimates are somewhat different un-

der the assumptions of the AR(1) hazard model compared with the Gaussian hazard

model. As the AR(1) hazard model allows for fluctuation in ability from score to

score, there are practically zero instances of posterior samples estimating equal abil-

ities across score ranges. Therefore, our prior probabilities indicate a player is more

or less a half chance to be batting worse during the 90s compared with nearby score

ranges.

Australian batsmen

Two opening batsman, Matthew Hayden and Chris Rogers, and middle order batsman

Steve Waugh make up the three Australian batsmen for whom the AR(1) model was

the most likely. Each of these players exhibit interesting score-based deviations in

ability at various times during their innings.

Matthew Hayden appears to experience a period of difficulty during the 30s, how-
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ever once he reaches 40, he begins to bat with increased ability. Interestingly, once

Hayden hits a score of 90, his effective average appears to plummet, suggesting he

may be a player whose batting ability suffers during the ‘nervous 90s’.

The predictive hazard function for Chris Rogers suggests he experiences a signifi-

cant decline in batting ability from scores just before 40, until just past the milestone

of 50 runs. Within the scope of the AR(1) hazard model, Rogers maintains a fairly

stable batting ability from a score of roughly 60 onwards. This may indicate Rogers

tends to lose concentration after passing the milestone of 50, rather than 100 as

observed for several players analysed under the Gaussian hazard model.

Compared with the other two Australians, Steve Waugh’s predictive hazard func-

tion is fairly stable, other than a possible period of increased ability between scores

of 110 and 150.

Figure 4.17. Predictive hazard functions for the AR(1) hazard model in terms of
effective average, µ(x), for the Australian batsmen.
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Table 4.6: Posterior probability estimates for the Australian batsmen, comparing
mean batting abilities during the 50s, 60s, 70s, 80s and 100s against the mean batting
ability during the 90s.

Player P (µ̄50s > µ̄90s|d) P (µ̄60s > µ̄90s|d) P (µ̄70s > µ̄90s|d) P (µ̄80s > µ̄90s|d) P (µ̄100s > µ̄90s|d)

M. Hayden 0.73 0.68 0.76 0.76 0.41

C. Rogers 0.34 0.50 0.57 0.57 0.47

S. Waugh 0.67 0.55 0.57 0.60 0.52

Prior 0.48 0.49 0.49 0.49 0.50

The posterior probability estimates from Table 4.6 tentatively confirm our suspi-

cions regarding Matthew Hayden, that there is possible evidence (albeit very weak)

that he does begin to bat worse once hitting the 90s. However, it is difficult to con-

clusively say that what Hayden experiences is exclusively due to the ‘nervous 90s’, as

the decline in his effective average does not appear to stop once he passes 100. In fact,

this deterioration in ability continues until Hayden reaches a score of roughly 140.

Despite being a relatively quick scorer in terms of Test match cricket with a strike

rate of 60.10, it is possible Hayden begins to suffer from either physical or mental

fatigue once reaching a score as high as 90. Alternatively, as an opening batsman,

Hayden may perceive his job of seeing off the opening bowlers and new ball as suffi-

ciently achieved once he has scored 90 runs, and proceeds by taking the attack to the

bowling side and playing more aggressively.

There is no evidence to suggest the batting abilities of either Chris Rogers or Steve

Waugh are affected by the ‘nervous 90s’. However, looking at scores leading up to,

and following 50, suggests Rogers may be vulnerable to losing his wicket immediately

after passing the milestone of 50 runs

P (µ̄40s, Rogers < µ̄50s, Rogers|d) = 0.27.

Rest of world batsmen

Figure 4.18 depicts the predictive hazard functions for the three rest of world players,

for whom the AR(1) hazard model was the most likely. Included in this group is
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arguably the most famous modern-day cricketer, and undoubtedly one of the greatest

batsmen of all-time, Indian great Sachin Tendulkar. During his heyday, Tendulkar

had very few flaws in his game, however the AR(1) hazard model suggests if Ten-

dulkar was especially vulnerable at any time during his innings (except for at the

very beginning), it was between scores of 30 and 50. There is certainly no evidence

to suggest Tendulkar’s batting suffered from the ‘nervous 90s’, in fact, it appears as

though his batting ability actually increases once he starts nearing 100. The other

batsmen presented in Figure 4.18, Andy Flower and Matt Prior follow a similar trend

of increasing in batting ability as they near 100.

Globally, there are cricketers and fans alike who believe Sachin Tendulkar was

susceptible to the ‘nervous 90s’, as he holds the record for most dismissals in the 90s

in Test cricket with 10 (an average of 1 every 32.9 innings). However, these beliefs

are misguided, as the major reason Tendulkar holds this record is due to the fact he

is by far the most capped player in history, having played in 200 Test matches (the

Figure 4.18. Predictive hazard functions for the AR(1) hazard model in terms of
effective average, µ(x), for the rest of world batsmen.
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Table 4.7: Posterior probability estimates for the batsman from the rest the of world,
comparing mean batting abilities during the 50s, 60s, 70s, 80s and 100s against the
mean batting ability during the 90s.

Player P (µ̄50s > µ̄90s|d) P (µ̄60s > µ̄90s|d) P (µ̄70s > µ̄90s|d) P (µ̄80s > µ̄90s|d) P (µ̄100s > µ̄90s|d)

A. Flower 0.35 0.23 0.30 0.35 0.50

M. Prior 0.55 0.29 0.32 0.37 0.54

S. Tendulkar 0.51 0.50 0.44 0.43 0.61

Prior 0.48 0.49 0.49 0.49 0.50

next highest are Australians Allan Border and Ricky Ponting with 168 caps). In fact,

the player with the highest ratio of innings to dismissals in the 90s is Michael Slater

(with 1 every 14.6 innings), who is analysed in Section 4.4.5.

The posterior probability estimates in Table 4.7 provide absolutely no evidence to

support any cricketing folklore that Sachin Tendulkar is vulnerable to being dismissed

in the 90s. Similarly, the probability estimates for both Andy Flower and Matt Prior

provide no evidence to suggest either of these players were adversely affected by

‘nervous 90s’.

4.4.5 Michael Slater: a case study

As a player with an abnormally high ratio of innings to times dismissed in the 90s,

Michael Slater is often accused of suffering from the ‘nervous 90s’. Slater is second

only to Sachin Tendulkar in terms of number of dismissals in the 90s with 9, however

achieved this number in far fewer innings. If we limit this statistic to only include

innings where the player scored at least 90 runs, Tendulkar was dismissed just 10

times from 61 occasions (i.e. 16% of the time), while Slater was dismissed 9 times

from 23 innings (39% of the time), a vastly inferior record. Therefore, the expectation

was that if any player were to exhibit a clear-cut case of the ‘nervous 90s’, it would

be Slater.

Posterior samples for Michael Slater’s effective average were generated under the

assumptions of each of the three models. The predictive hazard function for each

Table 4.8: Test career batting record for Michael Slater.

Player Matches Innings Not Outs Runs High-Score Average Strike Rate 100s 50s

M. Slater 74 131 7 5312 219 42.83 53.29 14 21
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Table 4.9: Marginal likelihoods for each of the three models fitted to the Michael
Slater’s Test career data.

Model log(Z)
Exponential varying-hazard −590.13
Gaussian hazard −590.05
AR(1) hazard −589.85

model is plotted in terms of µ(x) in Figure 4.19. As indicated by Table 4.9, the

more flexible Gaussian and AR(1) models appear to fit Slater’s data better than

the exponential varying-hazard model, suggesting Slater does exhibit some sort of

temporal variation in ability over the course of an innings.

Interestingly, the predictive hazard functions for both the Gaussian hazard and

AR(1) hazard models suggest Slater exhibits a period of increased batting ability

during the 60s, 70s and 80s, rather than a significant decrease in ability during the

90s. The AR(1) hazard model also shows a slight decrease in batting ability during

the 40s, right before the 50 run mark, potentially providing further evidence that

Slater becomes unsettled before significant milestones.

Figure 4.19. Predictive hazard functions for each of the three models in terms of
effective average, µ(x), for Michael Slater.
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Table 4.10: Posterior probability estimates for Michael Slater for each of the three
models, comparing mean batting abilities during the 50s, 60s, 70s, 80s and 100s
against the mean batting ability during the 90s. Prior probabilities are given for each
model in red.

Model P (µ̄50s > µ̄90s|d) P (µ̄60s > µ̄90s|d) P (µ̄70s > µ̄90s|d) P (µ̄80s > µ̄90s|d) P (µ̄100s > µ̄90s|d)

Exponential varying-hazard 0.00 0.00 0.00 0.00 1.00

(0.00) (0.00) (0.00) (0.00) (1.00)

Gaussian hazard 0.31 0.34 0.36 0.36 0.44

(0.17) (0.17) (0.17) (0.17) (0.56)

AR(1) hazard 0.74 0.77 0.78 0.79 0.48

(0.49) (0.49) (0.49) (0.49) (0.50)

The prior and posterior probabilities for the exponential varying-hazard model are

either 0 or 1 due to the fact that the effective average is a monotonically increasing

function. Unsurprisingly, this implies that this model is unable to pick up on any

temporal deviation in ability, outside of the initial period of a player getting their

‘eye-in’.

As the most likely model to apply to Slater’s data, we are primarily interested

in the findings of the AR(1) hazard model. The posterior probability estimates do

suggest there is some evidence that Slater begins to bat worse, once he enters the

90s. However, the very notion a player suffering from the ‘nervous 90s’, implies that

a batsman will begin to bat better once they pass the 100 run mark, which is not

supported in Slater’s case. This leads us to conclude that rather than being adversely

affected by the ‘nervous 90s’, it is possible that Slater simply bats very well for a

period of time after passing 50 and consequently reaches scores of 90 more frequently

than a player of his calibre should.

Prior and posterior probabilities comparing Slater’s batting abilities in the 30s and

50s with ability during the 40s are shown in Table 4.11. While there is some evidence

to suggest Slater bats worse during the 40s, these estimates are hardly significant

shifts away from the prior probabilities.

Therefore, despite being a player whose data suggests a possible decline in batting

ability when nearing the mark of 100 runs, there is only weak evidence to suggest

that Michael Slater begins to bat worse once he enters the 90s. It is unlikely that
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Table 4.11: Posterior probability estimates for Michael Slater for the AR(1) hazard
model, comparing mean batting abilities during the 30s and 50s against the mean
batting ability during the 40s.

Model P (µ̄30s > µ̄40s|d) P (µ̄50s > µ̄40s|d)
AR(1) hazard 0.60 0.73
Prior 0.46 0.53

this reduction in batting ability during the 90s can be attributed to nerves, as Slater

does not appear to bat much better even once passing the 100 run mark. Instead,

the Gaussian hazard and AR(1) hazard models both suggest it is more realistic that

Slater bats particularly well immediately after passing the milestone of 50 runs.

4.5 Limitations and conclusions

As seen from the predictive hazard functions in Section 4.4.3, the Gaussian hazard

model allows for some score-based variation in batting ability. While the exponential

varying-hazard model’s strength was identifying how well a player bats when they

first arrive at the crease, and how much better they become, the Gaussian hazard

model focusses on identifying score ranges that exhibit increased or decreased ability.

These score ranges typically occur at scores after the batsman is deemed to have their

‘eye-in’.

Looking specifically at player batting ability across the range of scores in the

90s, the Gaussian hazard model does not conclusively identify any players whose

batting ability is affected by the ‘nervous 90s’. However, the model has identified

several players who are possibly guilty of losing their concentration after passing the

significant milestone of 100 runs (perhaps evidence of the ‘hazardous 100s’?).

Other than the limitations identified by the exponential varying-hazard model

(see Section 2.4), a drawback of the Gaussian hazard model is that only one period

of temporal deviation in ability is allowed under the definition of the model. For

batsmen such as Kumar Sangakkara, the predictive hazard function suggests there

are multiple possible periods of deviation in batting ability, however, only a single
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period can be fitted under the Gaussian hazard model. This is the sort of problem

we hoped to solve by fitting the AR(1) hazard model in section 4.4.4.

While the AR(1) hazard model allows for far more score-based variation in batting

ability than both the exponential varying-hazard and Gaussian hazard models, it was

the most likely model for only six of the 47 batsmen in the dataset. Our findings

suggest that of these six players, only Matthew Hayden appeared to exhibit a possible

decline in batting ability during the ‘nervous 90s’, although the posterior probabilities

are not overly convincing. These posterior probabilities also indicated that Chris

Rogers is potentially vulnerable immediately after passing the milestone of 50 runs (a

possible example of the ‘fallible 50s ’?), but again the evidence is not overwhelmingly

strong.

Therefore, given the relative preference for the Gaussian hazard model over the

AR(1) hazard model for players who do exhibit temporal variation in ability, an

adaptation to the Gaussian model could be made. Including the ability to fit multi-

ple Gaussian functions within the Gaussian hazard model, would allow for multiple

periods of temporal variation in batting ability to be fitted, for each individual bats-

man. Multiple Gaussian functions may better describe a player’s batting ability over

the course of an innings, better than an autoregressive process.

Considering the special case of Michael Slater, who was dismissed in the 90s on

an unusually large number of occasions, both the Gaussian hazard and AR(1) hazard

models identified an increase in batting ability for scores leading up to 90, rather than

a significant decrease in ability during the 90s. This leads us to conclude that Slater

was likely a better batsman than expected while on scores after 50, rather than a

bundle of nerves while in the 90s.

The Gaussian hazard and AR(1) hazard models were the most likely to apply

for 21 of the 48 players in the data set, with the exponential varying-hazard model

the most likely to apply for the remaining 27 players. Predictive hazard functions

for these players are presented in Appendix B. To thoroughly address the overall fit

of each of the three models, a more comprehensive exercise in model comparison is

carried out in Chapter 5.



Chapter 5

Marginal likelihoods and model

comparison

5.1 Overview

While the models presented in Chapter 4 allow for more complex interactions between

a batsman’s score and batting ability than the initial exponential varying-hazard

model from Chapter 2, the question still remains: which model is the ‘best’?

In this chapter, the fits of the three models are compared for each of the inter-

national batsmen analysed in Chapter 4. Although there is plenty of uncertainty

pertaining to the temporal variations in ability exhibited by many of the players, it

is possible to make inferences as to how like each model is to apply to the data of

world-class batsmen.

A posterior distribution for determining the probability of a model given the data

is derived in Section 5.2. Using this distribution, we can estimate what proportion of

world-class batsmen undergo periods of score-based deviation in ability throughout

their innings.

Finally, in Section 5.3, the thesis is summarised by calculating the overall marginal

likelihood of the data, given the assumptions of the three models that have been fitted

to the data set of international batsmen.

83
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5.2 Measuring the undetectable

As mentioned throughout this thesis, using nested sampling to fit each model allows

us to easily calculate the marginal likelihood or evidence, Z. This allows for model

selection to be carried out trivially when comparing models for an individual player,

by simply using Bayes factor (Equation 1.4). For example, comparing the exponential

varying-hazard and AR(1) hazard models for Michael Slater gives

exp(−589.85)

exp(−590.13)
= 1.32,

indicating the AR(1) hazard model is favoured by a factor of approximately 1.3 to 1.

However, it is not quite so straightforward comparing models across all players in the

data set.

Table B.2 in Appendix B presents the marginal likelihoods when fitting each of

the three models, to each player in our data set of interest. Of the 47 players, the

exponential varying-hazard model was the most likely for 26, the Gaussian hazard

model for 15 and the AR(1) hazard model for 6. Interestingly, this implies that for

the majority of players, the least flexible model was the most likely model to apply

to the data. This observation can best be explained by the principle of Occam’s

razor, that one should accept the simplest explanation that fits the data (Thorburn,

1918; Jefferys & Berger, 1992; MacKay, 2003). That is, if a player does not appear

to exhibit a significant amount of temporal variation in batting ability during their

innings, then we have no reason to believe they do. Including additional parameters

that allow for deviations in batting ability only adds needless complication. Therefore,

the best model to fit to such a player, is one that does not allow for deviations in

ability once a player has their ‘eye-in’, i.e. the exponential varying-hazard model.

Looking at the marginal likelihoods in Table B.2 from another perspective tells us

the exponential varying-hazard model was the worst fit for 7 players, the Gaussian

hazard model for 3 and the AR(1) hazard model for 37. Regardless of perspective,

the findings consistently suggest the AR(1) hazard model tends to explain a player’s
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data the least well. However, from this angle it is more difficult to clearly determine

which model is the ‘best’, between the exponential varying-hazard model and the

Gaussian hazard model.

While we cannot be certain about the model fits for each individual player, we

can use the marginal likelihoods to make inferences regarding the wider population

of modern-day world-class batsmen. Using a technique referred to as ‘measuring

the undetectable’ (Lang et al., 2009), we can derive a posterior distribution, which

summarises the probability of each model being the most likely model to apply to the

data of a world-class batsman.

Deriving the posterior distribution for model comparison

Let ωi ∈ {1, 2, 3} be the proposition that each model is the most likely to apply

to the data for the ith player, where ω = 1 implies the exponential varying-hazard

model is most likely, ω = 2 implies the Gaussian hazard model, and ω = 3 implies

the AR(1) hazard model. Also, define qj as the conditional probability that model j

is the most likely model to apply to player i, where j = {1, 2, 3}, giving the vector

q = {q1, q2, q3}. Therefore, we can write the conditional distribution for ωi as

p(ωi|q) = {q1, q2, q3} (5.1)

where all observations ωi, are assumed independent and identically distributed. It is

worth noting we have already computed Zij, the marginal likelihoods for each model,

for each player.

If di is the data for the ith player in our data set, and d is the vector of data

sets for all 47 players, our goal is to derive a posterior distribution for p(q|d), which

will infer the probability that each model is the most likely for a given player, as the

hyperparameter q will determine the probability that model 1, 2 or 3 applies to a

particular player. Instinctively, to derive p(q|d), we might turn to Bayes’ theorem

p(q|d) =
p(q) p(d|q)

p(d)
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∝ p(q) p(d|q) (5.2)

Working backwards and applying the product rule we can rewrite this as

p(q|d) ∝ p(q)

∫
p(d,ω|q) dω

= p(q)

∫
p(ω|q) p(d|ω, q) dω

= p(q)

∫ [ 47∏
i=1

p(ωi|q)

]
p(d|ω) dω

= p(q)

∫ 47∏
i=1

p(ωi|q) p(di|ωi) dω1, ..., dω47 (5.3)

Given our assumption that ωi and di are conditionally independent (which is not

perfect, but is the best available option for now), we can pull out the product term

and treat the integrand as a summation over all models, over all ωi, giving

p(q|d) = p(q)
47∏
i=1

[
3∑
j=1

p(ωi|qj) p(di|ωi = j)

]
, (5.4)

where the conditional distribution for p(ωi|qj) = qj is given by Equation 5.1, and

p(di|ωi = j) is simply the marginal likelihood Zij for each model.

Since the nested sampling algorithm was defined to calculate the log-likelihood

(or log-evidence), using MCMC we evaluate the log-posterior

log [p(q|d)] = log [p(q)] +
47∑
i=1

3∑
j=1

log [p(ωi|qj) p(di|ω = j)] . (5.5)

Graphically, the model structure can be presented as a directed acyclic graph, as in

Figure 5.1.

To compute the posterior marginal distribution for q = {q1, q2, q3}, we must first

specify a prior distribution for q. As it is a vector of probabilities, q was assigned a

Dirichlet prior with concentration parameters equal to 1, giving the expected value of

q = {1
3
, 1
3
, 1
3
}. For computational efficiency, values for q were sampled in the MCMC



5.2. Measuring the undetectable 87

Figure 5.1. Directed acyclic graph illustrating the structure of the model.

algorithm by sampling values e = {e1, e2, e3} from an Exponential(1) distribution; q

is obtained by normalising e (i.e. q =
ej∑
j e

).

The posterior marginal distribution for q is shown in Figure 5.2, indicating that the

exponential varying-hazard model is the model most likely to apply to a world-class

batsman’s data, followed by the Gaussian hazard model, with the AR(1) hazard model

being the least likely. Therefore, our updated state of knowledge regarding q can be

obtained by taking the posterior means and is summarised as q̂ = {0.49, 0.40, 0.11}.

These are also our posterior predictive probabilities for the ‘next’ world-class batsman.

As q2 + q3 > 0.5, we would predict that there is just over a half chance that the

next world-class batsman analysed by the three models, would exhibit some form of

significant temporal variation in batting ability, during their innings.

Figure 5.2. Histograms representing the posterior marginal distributions for qj, indi-
cating the probability of each model being the most likely to apply to a world-class
batsman’s career data.
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5.3 Marginal likelihood of the thesis

As we have computed the likelihoods for each model, for every player, the entirety

of this thesis can be summarised using just a single marginal likelihood value, rep-

resenting the likelihood of the data, given the assumptions of the three models that

have been fitted. Consider the proposition, T , that for each player in the data set,

one of the three models applies. Then, the most computationally convenient form of

calculating the marginal likelihood of observing the data, d, given T is

p(d|T ) =

∫
p(q) p(d|q) dq

≈ Average value of p(d|q) when sampling from p(q). (5.6)

Using the result of Equation 5.6 we can use MCMC to compute the marginal like-

lihood for the data set of 47 international players. The corresponding log-likelihood

value that summarises this thesis is −34121.21. This value alone has little mean-

ing but allows for different model assumptions to be compared through the ratio of

marginal likelihood values, or Bayes’ factors (Skilling, 2006). Therefore, assuming

the exact same data set of 47 international batsmen is used, it is easy to compare the

performance of another set of models with the exponential varying-hazard, Gaussian

hazard and AR(1) hazard models.



Chapter 6

Concluding statements and further

work

This thesis has presented new, innovative methods of quantifying how well cricket

players bat over the course of an innings. As expected, the models developed provide

conclusive evidence that batsmen do not bat with equal ability throughout their

innings. Rather, it takes time to get used to the specific match conditions, supporting

the cricketing notion of ‘getting your eye-in’.

The exponential varying-hazard model detailed in Chapter 2 enables the identi-

fication of (1) how well a batsman performs when they first begin an innings, (2)

how much better they perform once they have their ‘eye-in’ and (3) how long it takes

them to transition between their initial and ‘eye-in’ batting abilities. Despite ignoring

important variables, such as balls faced or minutes batted, which may be included

in future models, these tools can provide coaches and players with invaluable infor-

mation as to which players in both their own, and opposition teams, are particularly

vulnerable at the beginning of their innings. This may allow for the identification of

particular players who are more or less suited to open the batting, leading to practical

implications in terms of batting order and team selection policy. Additionally, cap-

tains can use this information to set more attacking fields for longer, for opposition

players who exhibit a prolonged period of vulnerability at the start of their innings.

89
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Applying the model in a hierarchical structure allows for inference to be made

regarding a wider group of players, as well as being able to make informed predictions

concerning the abilities of the next player to join the cohort of players analysed. In the

case of New Zealand opening batsmen, the hierarchical model confirms our suspicions

that opening has been a position of concern for the national side since the year 2000.

The relatively low estimates for initial batting abilities, µ1, suggest our concept of

opening batsmen being more ‘robust’ than other batsman is not widely supported,

although this may be due to the talent pool focussed on. Applying the hierarchical

model to a country that has produced a larger number of world-class opening batsmen

in the recent past (e.g. Australia, England, India, South Africa), may yield a different

conclusion.

Developing the exponential varying-hazard model further to allow for temporal

deviations in ability, other than at the beginning of a player’s innings, allows for the

exploration of popular cricketing superstitions, such as the ‘nervous 90s’. However,

the findings from the Gaussian hazard and AR(1) hazard model in Chapter 4 suggest

very few players exhibit a significant decline in ability during the 90s, and those players

who do, do not appear to immediately improve in terms of batting ability once scoring

100. Realistically, no players have played Test cricket for long enough to confidently

confirm or refute the existence of any detrimental effects due to the ‘nervous 90s’.

This implies that rather than assuming a player’s batting ability deteriorates during

the ‘nervous 90s’, players should be presumed to be unaffected by the ‘nervous 90s’,

unless proven otherwise, akin to the legal right to be presumed innocent until proven

guilty. In fact, the most common score-based deviations in ability appear to occur

immediately after passing significant milestones, giving rise to the sentiments of the

‘fallible 50s’ and the ‘hazardous 100s’.

While it is difficult to confirm the existence of any systematic score-based devia-

tions in ability between players, the Gaussian and AR(1) hazard models still provide

evidence of temporal variation in batting ability pertaining to individual players. In

terms of practicality, this may supply the fielding team captain with knowledge as

to when the best times to attack and defend are, during an opposing player’s in-
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nings. A traditional fielding approach would see a captain set attacking fields during

the early stages of a player’s innings, with fields becoming more and more defensive

as the batsman scores more runs. However, the results of the Gaussian and AR(1)

hazard models may offer the fielding side additional attacking opportunities, during

periods where a batsman exhibits a period of decreased ability that would usually go

unnoticed.

As both the Gaussian and AR(1) hazard models suggest the presence of temporal

variation in batting ability during an innings, future models could explore the plau-

sibility of variation existing between innings. Such fluctuations in ability may exist

on two scales: long-term variation due to factors such as age and experience, and

short-term variation due to opposition, local pitch and weather conditions, player

form and player fitness.

Maintaining records concerning the performance of batsmen in certain pitch and

weather conditions, may help with team selection in foreign batting conditions (e.g.

teams such as Australia and New Zealand travelling to the sub-continent). While most

international sides likely maintain some data of this nature, the continual failure of

certain players in particular conditions suggests that teams could be doing far more

in the way of pitch and weather analysis. This is especially true for countries with

deep talent pools, which should allow for more flexibility in selecting their optimal

starting XIs.

Regardless of local conditions, it is not uncommon to see the performances of older,

respected players, decline as they approach the end of their career. Selectors are often

faced with the difficult decision of dropping the older player in favour of somebody

younger — and possibly angering the public and fanbase — or sticking with the older

player who is producing sub-optimal results. Similarly difficult decisions arise when, a

regular player returns from injury, but the player who has temporarily replaced them

is performing extremely well. Allowing for more complex relationships between the

parameters of interest will give our models the ability to answer these more difficult

questions.

The aim of this thesis has not been to reinvent the coaching manual to focus en-
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tirely on the use of statistical models in cricket. However, developing models which

can accurately account for variation in ability due to long-term factors such as age,

or short-term factors such as pitch conditions and fitness, provide coaching and man-

agement staff with the information to make more informed decisions. Ultimately,

professional cricket is a results-driven industry. The development of any statistical

techniques that effectively model player ability, will provide teams with more strategic

tools at their disposal, which in close matches, can be the difference between winning

and losing.
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Appendix A

New Zealand opening batsmen

records and summaries

Table A.1: Test career batting records for all retired New Zealand opening batsmen
since 1990. Players are listed in order of debut, from oldest to most recent.

Player Matches Innings Not Outs Runs High-Score Average Strike Rate 100s 50s

D. White 2 4 0 31 18 7.75 33.33 0 0

B. Hartland 9 18 0 303 52 16.83 31.33 0 1

R. Latham 4 7 0 219 119 31.28 48.99 1 0

B. Pocock 15 29 0 665 85 22.93 29.80 0 6

B. Young 35 68 4 2034 267* 31.78 38.95 2 12

C. Spearman 19 37 2 922 112 26.34 41.68 1 3

M. Horne 35 65 2 1788 157 28.38 40.78 4 5

M. Bell 18 32 2 729 107 24.30 37.81 2 3

G. Stead 5 8 0 278 78 34.75 41.43 0 2

M. Richardson 38 65 3 2776 145 44.77 37.66 4 19

L. Vincent 23 40 1 1332 224 34.15 47.11 3 9

M. Papps 8 16 1 246 86 16.40 35.34 0 2

C. Cumming 11 19 2 441 74 25.94 34.86 0 1

J. Marshall 7 11 0 218 52 19.81 39.06 0 1

P. Fulton 23 39 1 967 136 25.44 39.27 2 5

J. How 19 35 1 772 92 22.70 50.45 0 4

A. Redmond 8 16 1 325 83 21.66 39.01 0 2

T. McIntosh 17 33 2 854 136 27.54 36.20 2 4

R. Nicol 2 4 0 28 19 7.00 26.66 0 0
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Table A.2: Test career batting records for currently active New Zealand opening
batsmen. Players are listed in order of debut, from oldest to most recent.

Player Matches Innings Not Outs Runs High-Score Average Strike Rate 100s 50s

M. Guptill 47 89 1 2586 189 29.36 46.61 3 17

H. Rutherford 16 29 1 755 171 26.96 56.42 1 1

T. Latham 29 55 2 2140 177 40.37 46.59 6 12

J. Raval 4 8 1 237 55 33.85 47.59 0 2

Table A.3: Posterior summaries for all retired New Zealand opening batsmen since
1990, including the estimate for the next opener to debut for New Zealand. Players
are listed in order of debut, from oldest to most recent.

Player µ1 68% C.I. µ2 68% C.I. L 68% C.I.

D. White 6.3+5.6
−3.3 [3.0, 11.9] 16.7+13.9

−7.0 [9.7, 30.6] 2.7+4.9
−2.1 [0.6, 7.6]

B. Hartland 6.9+4.6
−2.9 [4.0, 11.5] 20.7+6.6

−4.6 [16.1, 27.3] 1.9+3.3
−1.4 [0.5, 5.2]

R. Latham 10.5+9.9
−5.8 [4.7, 24.4] 35.9+17.5

−10.6 [25.3, 53.4] 4.1+7.6
−3.2 [0.9, 11.7]

B. Pocock 8.4+5.5
−3.3 [5.1, 13.9] 26.4+6.4

−4.7 [21.7, 32.8] 1.9+3.4
−1.4 [0.5, 5.3]

B. Young 15.0+5.9
−4.9 [10.1 , 20.1] 36.0+6.4

−4.8 [31.2, 42.4] 4.4+6.3
−3.0 [1.4, 10.7]

C. Spearman 13.1+6.2
−4.8 [8.3, 19.3] 28.8+5.9

−4.8 [24.0, 34.7] 2.0+3.4
−1.5 [0.5, 5.4]

M. Horne 14.3+5.4
−4.3 [10.0, 19.7] 32.3+5.7

−4.5 [27.8, 38.0] 4.4+5.1
−2.7 [1.7, 9.5]

M. Bell 4.9+3.0
−1.8 [3.1, 7.9] 32.7+10.1

−6.7 [26.0, 42.8] 3.2+5.4
−2.5 [0.7, 8.6]

G. Stead 18.0+11.5
−8.6 [9.4, 29.5] 35.8+14.9

−9.8 [26.0, 50.7] 3.1+6.7
−2.4 [0.7, 9.8]

M. Richardson 30.7+8.5
−8.8 [21.9, 39.2] 46.1+6.8

−5.6 [40.5, 52.9] 3.6+6.9
−2.8 [0.8, 10.5]

L. Vincent 13.5+7.0
−5.2 [8.3, 20.5] 40.6+10.1

−7.4 [33.2, 50.7] 6.0+7.7
−4.5 [1.5, 13.7]

M. Papps 4.4+3.3
−1.9 [2.5, 7.7] 23.6+11.0

−6.2 [17.4, 34.6] 3.0+5.1
−2.2 [0.8, 8.1]

C. Cumming 14.2+7.0
−5.7 [8.5, 21.2] 29.3+9.3

−6.5 [22.8, 38.6] 3.3+5.9
−2.5 [0.8, 9.2]

J. Marshall 7.3+5.9
−3.7 [3.6, 13.2] 24.0+9.8

−6.3 [17.7, 33.8] 2.1+3.7
−1.6 [0.5, 5.8]

P. Fulton 11.5+5.0
−4.0 [7.5, 16.5] 31.1+8.4

−5.9 [25.2, 39.5] 5.4+6.7
−3.4 [2.0, 12.1]

J. How 10.1+5.6
−3.9 [6.2, 15.7] 25.0+5.3

−4.1 [20.9, 30.3] 1.2+2.7
−0.9 [0.3 3.9]

A. Redmond 10.5+5.7
−4.2 [6.3, 16.2] 28.2+11.9

−7.3 [20.9, 40.1] 5.2+6.9
−3.4 [1.8, 12.1]

T. McIntosh 8.0+4.5
−3.0 [5.0, 12.5] 40.0+13.8

−9.2 [30.8, 53.8] 9.2+8.0
−5.3 [3.9, 17.2]

R. Nicol 5.9+5.4
−3.0 [2.9, 11.3] 16.5+13.7

−7.0 [9.5, 30.2] 3.0+5.0
−2.2 [0.8, 8.0]

NZ Opener 10.1+11.7
−5.8 [4.3, 21.8] 29.1+20.6

−12.1 [17.0, 49.7] 3.2+5.9
−2.4 [0.8, 9.1]
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Table A.4: Posterior summaries for currently active New Zealand opening batsmen,
including the estimate for the next opener to debut for New Zealand. Players are
listed in order of debut, from oldest to most recent.

Player µ1 68% C.I. µ2 68% C.I. L 68% C.I.

M. Guptill 9.0+3.5
−2.6 [6.4, 12.5] 34.1+5.0

−4.0 [34.0, 39.1] 2.6+2.8
−1.4 [1.2, 5.4]

H. Rutherford 15.3+6.8
−5.9 [9.4, 22.1] 29.4+7.2

−5.3 [24.1, 36.6] 2.3+6.2
−1.9 [0.4, 8.5]

T. Latham 13.5+7.1
−4.7 [8.8, 20.6] 46.9+8.9

−7.0 [39.9, 55.8] 5.4+5.7
−3.5 [1.9, 11.1]

J. Raval 16.7+11.8
−8.0 [8.7, 28.5] 36.2+17.1

−10.8 [25.6, 53.3] 3.7+6.7
−2.8 [1.1, 10.4]

NZ Opener 10.1+11.7
−5.8 [4.3, 21.8] 29.1+20.6

−12.1 [17.0, 49.7] 3.2+5.9
−2.4 [0.8, 9.1]
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Appendix B

International batsmen records and

summaries

Table B.1: Test career batting records for international batsmen averaging 40+ since
2000 (30 innings minimum). Players are listed by country, in alphabetical order.

Player Matches Innings Not Outs Runs High-Score Average Strike Rate 100s 50s

M. Clarke (AUS) 115 198 22 8643 329* 49.10 55.92 28 27

A. Gilchrist (AUS) 96 137 20 5570 204* 47.60 81.95 17 26

M. Hayden (AUS) 103 184 14 8625 380 50.73 60.10 30 59

M. Hussey (AUS) 79 137 16 6235 195 51.52 50.13 19 29

S. Katich (AUS) 56 99 6 4188 157 45.03 49.36 10 25

J. Langer (AUS) 105 182 12 7696 250 45.27 54.22 23 30

D. Lehmann (AUS) 27 42 2 1798 177 44.95 61.80 5 10

D. Martyn (AUS) 67 109 14 4406 165 46.37 51.41 13 23

R. Ponting (AUS) 168 287 29 13378 257 51.85 58.72 41 62

C. Rogers (AUS) 25 48 1 2015 173 42.87 50.60 5 14

A. Symonds (AUS) 26 41 5 1462 162* 40.61 64.80 2 10

M. Waugh (AUS) 128 209 17 8029 153* 41.81 52.27 20 47

S. Waugh (AUS) 168 260 46 10927 200 51.06 48.64 32 50
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Player Matches Innings Not Outs Runs High-Score Average Strike Rate 100s 50s

I. Bell (ENG) 118 205 24 7727 235 42.69 49.46 22 46

K. Pietersen (ENG) 104 181 8 8181 227 47.28 61.72 23 35

M. Prior (ENG) 79 123 21 4099 131* 40.18 61.66 7 28

A. Strauss (ENG) 100 178 6 7037 177 40.91 48.91 21 27

G. Thorpe (ENG) 100 179 28 6744 200* 44.66 45.89 16 39

M. Trescothick (ENG) 76 143 10 5825 219 43.79 54.51 14 29

J. Trott (ENG) 52 93 6 3835 226 44.08 47.18 9 19

M. Vaughan (ENG) 82 147 9 5719 197 41.44 51.13 18 18

R. Dravid (IND) 164 286 32 13288 270 52.31 42.51 36 63

S. Ganguly (IND) 113 188 17 7212 239 42.17 51.25 16 35

V. Laxman (IND) 134 225 34 8781 281 45.97 49.37 17 56

V. Sehwag (IND) 104 180 6 8586 319 49.34 82.23 23 32

S. Tendulkar (IND) 200 329 33 15921 248* 53.78 N/A 51 68

S. Fleming (NZ) 111 189 10 7172 274* 40.06 45.82 9 46

M. Richardson (NZ) 38 65 3 2776 145 44.77 37.66 4 19

J. Ryder (NZ) 18 33 2 1269 201 40.93 55.19 3 6

I. ul-Haq (PAK) 120 200 22 8830 329 49.60 54.02 25 46

M. Yousuf (PAK) 90 156 12 7530 223 52.29 52.39 24 33

H. Gibbs (SA) 90 154 7 6167 228 41.95 50.26 14 26

J. Kallis (SA) 166 280 40 13289 224 55.37 45.97 45 58

G. Kirsten (SA) 101 176 15 7289 275 45.27 43.43 21 24

A. Prince (SA) 66 104 16 3665 162* 41.64 43.70 11 11

G. Smith (SA) 117 205 13 9265 277 48.25 59.67 27 38

T. Dilshan (SL) 87 145 11 5492 193 40.98 65.54 16 23

S. Jayasuriya (SL) 110 188 14 6973 340 40.07 N/A 14 31

M. Jayawardene (SL) 149 252 15 11814 374 49.84 51.45 34 50

H. Tillakaratne (SL) 83 131 25 4545 204* 42.87 N/A 11 20

T. Samaraweera (SL) 81 132 20 5462 231 48.76 46.92 14 30

K. Sangakkara (SL) 134 233 17 12400 319 57.40 54.19 38 52

S. Chanderpaul (WI) 164 280 49 11867 203* 51.37 43.31 30 66

C. Gayle (WI) 103 182 11 7214 333 42.18 60.26 15 37

B. Lara (WI) 131 232 6 11953 400* 52.88 60.51 34 48

A. Flower (ZIM) 63 112 19 4794 232* 51.54 45.07 12 27



105

Table B.2: Model marginal likelihoods or ‘evidence’ for the exponential varying-
hazard model, Gaussian hazard model and AR(1) hazard model.

Player Exponential varying-hazard Gaussian hazard AR(1) hazard

M. Clarke (AUS) −824.14 −824.03 −824.24

A. Gilchrist (AUS) −543.79 −543.91 −544.18

M. Hayden (AUS) −815.47 −814.92 −814.58

M. Hussey (AUS) −582.87 −582.59 −583.16

S. Katich (AUS) −430.58 −430.47 −430.71

J. Langer (AUS) −800.83 −800.86 −801.17

D. Lehmann (AUS) −194.63 −194.66 −194.92

D. Martyn (AUS) −442.86 −442.80 −443.10

R. Ponting (AUS) −1236.14 −1236.24 −1236.34

C. Rogers (AUS) −209.58 −209.32 −209.23

A. Symonds (AUS) −170.03 −170.19 −170.31

M. Waugh (AUS) −887.51 −887.26 −887.47

S. Waugh (AUS) −1032.36 −1032.15 −1032.14

I. Bell (ENG) −806.93 −806.84 −806.92

K. Pietersen (ENG) −816.35 −816.31 −816.55

M. Prior (ENG) −455.65 −455.40 −455.11

A. Strauss (ENG) −782.03 −781.83 −782.22

G. Thorpe (ENG) −725.23 −725.28 −725.29

M. Trescothick (ENG) −634.50 −634.63 −635.06

J. Trott (ENG) −389.77 −389.70 −390.02

M. Vaughan (ENG) −654.75 −654.59 −694.97

R. Dravid (IND) −1262.20 −1262.44 −1262.87

S. Ganguly (IND) −811.08 −811.25 −811.45

V. Laxman (IND) −921.71 −921.82 −921.92

V. Sehwag (IND) −847.51 −847.50 −847.88

S. Tendulkar (IND) −1475.78 −1475.94 −1475.44

S. Fleming (NZ) −836.19 −836.22 −836.54

M. Richardson (NZ) −302.39 −302.25 −302.45

J. Ryder (NZ) −146.16 −146.21 −146.27

I. ul-Haq (PAK) −848.55 −848.63 −848.77

M. Yousuf (PAK) −691.83 −691.88 −692.31

H. Gibbs (SA) −696.48 −696.92 −696.82

J. Kallis (SA) −1172.66 −1172.78 −1173.42
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Player Exponential varying-hazard Gaussian hazard AR(1) hazard

G. Kirsten (SA) −769.79 −770.04 −770.18

A. Prince (SA) −405.67 −405.55 −405.69

G. Smith (SA) −906.77 −906.88 −907.28

T. Dilshan (SL) −603.04 −603.07 −603.34

S. Jayasuriya (SL) −815.59 −815.68 −815.76

M. Jayawardene (SL) −1104.75 −1104.86 −1104.93

H. Tillakaratne (SL) −499.67 −499.59 −499.62

T. Samaraweera (SL) −544.04 −544.21 −544.46

K. Sangakkara (SL) −1034.86 −1034.65 −1034.94

S. Chanderpaul (WI) −1122.55 −1122.84 −1123.17

C. Gayle (WI) −790.65 −790.77 −790.94

B. Lara (WI) −1114.95 −1115.17 −1115.33

A. Flower (ZIM) −462.33 −462.39 −462.32

Predictive hazard functions

Figure B.1. Predictive hazard functions for the exponential varying-hazard model in
terms of effective average, µ(x), for Australian batsmen.
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Figure B.2. Predictive hazard functions for the exponential varying-hazard model in
terms of effective average, µ(x), for English and New Zealand batsmen.

Figure B.3. Predictive hazard functions for the exponential varying-hazard model in
terms of effective average, µ(x), for Indian and Pakistani batsmen.
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Figure B.4. Predictive hazard functions for the exponential varying-hazard model in
terms of effective average, µ(x), for South African batsmen.

Figure B.5. Predictive hazard functions for the exponential varying-hazard model in
terms of effective average, µ(x), for Sri Lankan batsmen.
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Figure B.6. Predictive hazard functions for the exponential varying-hazard model in
terms of effective average, µ(x), for West Indian batsmen.
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Appendix C

Model code and data

Exponential varying-hazard model code

The following Julia functions were used to implement the exponential varying-hazard

model. Each function was fed into the nested sampling algorithm accordingly to pro-

duce posterior samples for a given batsman.

111
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Gaussian hazard model code

In order to implement the Gaussian hazard model, changes are only required for

functions Particle(), from prior(), perturb() and effective average(). The

log likelihood() function remains the same.
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AR(1) hazard model code

As the AR(1) hazard model uses a C++ implementation of the diffusive nested sam-

pling algorithm, the only function written in Julia was the effective average()

function that is used to evaluate the likelihood function (the likelihood function re-

mains the same from the exponential varying-hazard and Gaussian hazard models).

It is worth noting that the C++ implementation uses a Uniform(0, 1) prior for all

parameters. Therefore, to obtain the actual parameter values, we must use inverse

transform sampling, by using the uniform distributed value as the quantile value for

the actual prior distribution, for each respective parameter.
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Data

Australia

Michael Clarke

151, 17, 5, 39*, 91, 73, 17, 7, 141, 7, 1, 27, 20, 35, 8, 8, 22, 11, 91, 40, 30, 7, 39, 36,

56, 25, 39, 5, 5, 14*, 5, 19, 9, 23*, 56, 124, 21*, 37, 135*, 5, 11, 145*, 71, 20, 73, 1, 0,

23, 81, 118, 110, 10, 0, 48*, 11, 6, 23, 69, 112, 8, 22, 98, 9, 110, 62, 25, 88*, 29, 138,

41, 68, 0, 3, 23*, 0, 47, 83, 1, 136, 29, 103*, 93, 3, 0, 41, 71, 61*, 11, 25, 28*, 37, 3,

21, 166, 168, 28, 63, 14, 4, 14, 3, 9, 2, 80, 4, 20, 20, 13, 4, 41, 23, 60, 13, 6, 112, 151,

2, 11, 2, 139, 22, 0, 31, 1, 329*, 18, 210, 37, 73, 6, 45, 15, 24, 25, 259*, 230, 38, 5, 44,

74, 57*, 106, 50, 29, 130, 31, 91, 16, 0, 18, 0, 23, 28, 51, 187, 30*, 6, 21, 7, 28*, 1,

113, 148, 22, 24, 23, 10, 6*, 10, 6, 23, 17*, 19, 1, 161*, 0, 128, 7, 18, 47, 14*, 38, 4, 7,

32*, 10, 3, 10, 13, 15

Adam Gilchrist

81, 6, 149*, 28, 0, 43, 78, 55, 45*, 7, 59, 3, 75, 0*, 48, 50, 9, 10*, 37, 87, 122, 0, 0,

1, 1, 152, 90, 54, 19, 25, 118, 20, 39, 0, 83*, 7, 22, 30*, 34, 204*, 138*, 24, 91, 16, 0,

60*, 54, 38, 1, 10*, 133, 37, 77, 101*, 65, 33, 6, 43, 113*, 20, 0, 29, 43, 14, 6, 4, 4, 0,

0, 144, 22, 31*, 0, 80, 35, 0, 104, 26, 3, 49, 2, 3*, 26, 5, 126, 50, 69, 0*, 48, 113, 121,

162, 60*, 26, 10, 49*, 1, 30, 4, 27, 11, 23, 94, 1, 44, 2, 6, 6, 44, 2, 0, 86, 12, 2, 24, 12,

0, 144, 12, 0, 64, 0, 102*, 1, 62, 67*, 23, 35, 7, 1, 55, 15, 14

Matthew Hayden

15, 5, 5, 0, 125, 0, 47, 40, 0, 14, 10, 0, 2, 37, 44, 69, 58, 14, 13, 30, 3, 5, 119, 28*, 97,

67, 203, 35, 35, 0, 6*, 33, 42, 15, 35, 68, 136, 13, 91, 0, 57, 31, 131, 138, 3*, 105, 21*,

122, 63, 96, 28, 0, 197, 103, 46, 30, 102, 1, 15, 2, 10, 19, 30, 100*, 27, 2*, 14, 177, 11,

50, 380, 20, 101*, 37, 99, 12, 17, 136, 53*, 67, 30, 41, 130, 54, 5, 25, 28, 37, 2, 117,

132, 26, 30, 58, 39, 23, 9, 35, 24, 8, 70, 54, 4, 10, 9, 56*, 26, 23*, 35, 15, 61, 38, 9, 12,
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34, 0, 31, 34, 36, 7, 26, 138, 0*, 111, 77, 37, 118, 110, 46, 47, 87*, 0, 20, 65, 137, 4,

90, 94, 32, 0, 102, 3, 0, 6, 72, 29, 21, 37, 12, 18, 24, 92, 153, 33, 23*, 43, 17, 33, 124,

47, 13, 123, 103, 0, 13, 0, 29, 83, 16*, 16, 77, 8, 0, 24, 12, 4, 8, 23, 31, 39

Michael Hussey

1, 29, 137, 31*, 133*, 30*, 23, 58, 122, 31, 45, 6, 14*, 75, 73, 89, 23, 37, 182, 86, 91,

61*, 74*, 103, 6, 37, 133, 132, 34*, 2, 36, 41, 145*, 0, 46, 22, 56, 1, 10, 40, 12, 18, 146,

31, 54, 1, 53, 90, 19, 35, 0, 70, 0, 8, 0, 2, 30, 45*, 4, 0, 50, 19, 20, 39, 3, 51, 27, 0, 64,

10, 0, 121, 66, 41, 29, 82, 17, 82, 4, 28, 134*, 6, 13*, 4, 22, 67, 17, 28, 34, 20, 195, 93,

52, 61, 116, 8, 0, 33, 12, 95, 15, 142, 118, 93, 1, 0, 20, 39, 15, 8, 0, 0, 89, 150*, 14, 25,

15, 48, 32, 73, 24, 10, 32, 100, 103, 54, 12, 26, 115*, 31*, 34, 25, 27*

Simon Katich

15, 0*, 52, 16, 75, 31, 29, 125, 77*, 14, 86, 9, 15, 1, 1, 81, 39, 36*, 9, 4, 99, 7, 1, 118,

35, 35, 27, 67, 4, 16, 17, 12, 45, 59, 1, 0, 2, 0, 12, 1, 113, 36, 157, 66, 34, 33, 20, 64,

14*, 102, 16, 10, 131*, 23, 83, 37, 54, 15, 47, 61, 3, 10, 108, 30, 55, 54, 122, 48, 6, 46,

26, 0, 50, 43, 92, 80, 21, 99, 10, 98, 2, 11, 100, 79, 18*, 88, 106, 6, 37, 43, 24, 50, 4,

0, 43

Justin Langer

20, 54, 10, 1, 63, 24, 0, 0, 69, 12, 0, 19, 0, 116, 14, 30, 51, 8, 74, 15, 7, 179*, 52, 44,

30, 26, 1, 5, 24, 8, 24, 51, 1, 51, 127, 7, 5, 7, 32, 44, 1, 59, 127, 144, 11, 38, 8, 9, 223,

46, 47, 12, 57, 4, 122*, 3, 5, 6, 48, 31, 80, 20, 10, 19, 58, 28, 35, 21, 102*, 104, 18*,

123, 75, 0, 116, 1, 85, 7, 126, 30*, 28, 37, 58, 11, 18, 32, 22, 48, 19, 250, 24, 25, 3,

146, 78*, 25, 3, 78, 0, 42, 111, 71, 1, 26, 2, 8, 121, 0, 58, 10, 14, 2, 117, 47, 12, 32, 3,

9, 19, 166, 30, 10, 162, 8, 52, 0, 71, 19, 44, 30, 12, 0, 34, 215, 46, 191, 97, 50, 5, 13,

34, 23, 72*, 46, 6, 59*, 40, 6, 82, 28, 31, 14, 27, 61, 105, 0*, 0, 22, 99, 20, 37, 47, 25,

20, 16, 34, 35, 37, 0*, 82, 100*, 4, 7, 37, 0, 27, 26, 20*
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Darren Lehmann

52, 98, 3, 26, 13, 4, 32, 0, 30, 20*, 5, 42, 6, 160, 66, 96, 4*, 7, 14, 110, 177, 30, 63,

129, 8, 21, 153, 1, 57, 51, 50, 21, 17, 14, 0, 31, 70, 8, 81, 12, 5, 11

Damien Martyn

36, 15, 7, 67*, 0, 13, 31, 1, 74, 8, 59, 6, 17, 36, 78, 17*, 89*, 4, 46*, 34*, 105, 52, 4,

33*, 118, 6, 64*, 4, 0, 60, 30, 124*, 6*, 52, 117, 133, 2, 0, 11, 0, 26, 64, 95, 71, 17, 0,

26, 21, 53, 32, 42, 66*, 30, 38, 31, 7, 40, 42, 110, 1, 161, 14, 5, 47, 7, 97, 52, 3, 45, 26,

104, 114, 97, 55, 0, 70, 7, 6*, 1, 100*, 142, 67, 32, 165, 38, 2, 65, 20, 28, 20, 19, 1, 13,

10, 22, 9*, 57, 15*, 21, 101, 4, 7, 29, 11, 5

Ricky Ponting

96, 71, 6, 20, 14, 13, 88, 9, 9, 4, 127, 9, 45, 40, 20, 26, 73*, 16, 4, 105, 32, 62, 26, 23,

18, 2, 60, 9, 16, 76*, 43, 21, 11, 5, 10, 104, 22, 21, 21*, 96, 51, 1, 105*, 31, 0, 0, 0,

197, 125, 21, 67, 21*, 141*, 20, 5, 92, 11, 23, 26*, 51, 14*, 0, 6, 0, 0, 11, 11, 14, 4, 14,

17, 144, 72, 62, 5, 32*, 157*, 31, 26, 54, 25, 22, 0*, 14, 39, 47, 100*, 89, 34, 123, 3,

154, 68, 21, 30, 7, 11, 117, 42*, 206, 45, 113, 10, 59, 37, 169, 53*, 54, 50, 242, 0, 257,

31*, 25, 47, 21, 28, 10, 27, 92, 20, 22, 45, 11, 12, 51, 68, 26*, 25, 98, 7, 62*, 207, 4*,

46, 47*, 9, 105, 86*, 9, 42, 61, 0, 7, 156, 1, 48, 35, 46, 54, 149, 104*, 17, 0*, 56, 3, 71,

53, 117, 11, 120, 143*, 74, 1, 103, 116, 34, 20, 21, 118*, 52, 196, 60*, 142, 49, 2, 75,

7, 45, 56, 31, 53*, 4, 3, 55, 1, 20, 45, 140, 158, 5, 65, 38, 18, 39, 123, 17, 5, 2, 87, 24,

8, 4, 17, 79, 0, 32, 101, 99, 0, 53, 83, 25, 9, 81, 0, 12, 150, 2, 38, 38, 5, 78, 8, 66, 55,

36, 20, 23*, 2, 57, 12, 0, 11, 209, 89, 41, 22, 6, 71, 4, 77, 72, 10, 51*, 0, 9, 12, 1, 10,

20, 44, 4, 48, 28, 8, 0, 0, 62, 78, 5, 16, 62, 60, 134, 7, 221, 60*, 4, 14, 7, 41, 23, 57, 0,

4, 16, 4, 8

Chris Rogers

4, 15, 16, 52, 15, 6, 84, 12, 110, 49, 23, 1, 16, 72, 2, 11, 54, 61, 116, 11, 119, 4, 1, 5,

107, 25, 39, 9, 21, 55, 55, 57, 69, 95, 56, 95, 10, 173, 49*, 52, 6, 0, 52, 43
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Andrew Symonds

0, 24, 6, 23, 1, 9, 13, 25, 0, 72, 12, 55, 13, 4, 29, 26, 2, 156, 48, 53*, 50*, 35, 44, 162*,

61, 66, 12, 30, 70*, 79, 18, 43*, 52, 2, 26, 20, 0, 57, 37, 27, 0

Mark Waugh

138, 23, 26, 39, 71, 31, 64, 20*, 3, 139*, 0, 11, 34, 5, 18, 15, 0, 5, 56, 0, 0, 0, 0, 39,

60, 112, 16, 57, 0, 26, 9, 21, 13, 12, 6, 64, 99, 70, 1, 52, 137, 62*, 10, 49, 36, 111, 68,

84, 7, 11, 2, 12, 42, 28, 7, 43, 113*, 20, 61, 68, 71, 140, 15, 71, 29, 3, 25, 39, 24, 88,

1, 40, 4, 61, 2, 7, 126, 59, 88, 3, 116, 34, 111, 61, 71, 12, 26, 23, 38, 57, 19, 67, 0, 19,

82, 79, 9, 26, 20, 116, 5, 42, 5, 1, 33, 12, 55, 8, 68, 7, 19, 1, 3, 17, 86, 81, 9, 0, 1, 100,

63, 115*, 66, 18, 10, 0, 153*, 33*, 0, 42, 43, 26, 117, 31, 27*, 36, 17*, 7, 51*, 36, 43,

121, 24, 2, 33, 67, 21, 0, 3, 11, 65, 6, 0, 10, 13, 90, 100, 5, 0, 0, 5, 8, 41, 51*, 32, 72*,

25, 3, 44*, 28, 18, 24, 119, 63, 5, 25, 78*, 22, 3, 0, 22, 0, 70, 57, 49, 108, 0*, 15, 42*,

72, 24*, 120, 0, 12, 42, 86, 2, 74, 34, 19, 53, 25, 16, 45, 30

Steve Waugh

13, 5, 8, 0, 11, 74, 1, 1, 0, 39*, 6, 0, 28, 71, 79*, 10, 49, 0, 73, 21, 61, 55, 10, 27, 20, 0,

13, 1, 19, 59, 4, 90, 91, 26, 42, 3, 55*, 12, 8, 177*, 152*, 21*, 43, 92, 0, 14, 7*, 17, 60,

57, 16, 134*, 20, 3, 17, 4, 25, 25, 1, 19, 48, 14, 26, 2, 4*, 10, 20, 38, 1, 100, 42, 4, 13,

0, 62, 75, 41, 0, 3, 78*, 13*, 13, 47*, 157*, 59, 20, 26, 44, 25*, 147*, 164, 1, 45*, 0,

86, 64, 73, 0, 98, 19, 7, 94*, 26*, 1, 0, 19, 0, 99*, 80, 65, 15, 65*, 63*, 21, 200, 112*,

7, 29, 38, 14, 131*, 170, 61*, 0, 67*, 66, 58, 37, 26, 1, 0, 160, 8, 18, 67, 60*, 12, 33,

0, 108, 116, 4, 75, 14, 22, 6, 2, 23, 96, 7, 2*, 96, 17, 85, 6, 34, 12, 27, 80, 33, 157, 1,

49*, 0, 28, 112, 16*, 33, 15*, 59, 7, 122*, 30*, 96, 8, 14, 0, 100, 9, 199, 11, 72*, 4, 19,

19, 14, 151*, 1, 24, 28, 5, 150, 5, 32, 32, 57, 17, 10, 151*, 15, 3, 18*, 41, 26, 121*, 20,

103, 38, 15, 110, 24, 47, 47, 105, 45, 13, 1*, 157*, 3, 0, 8, 67, 8, 13, 90, 30, 32, 0, 14,

7, 42, 7, 12, 34, 53, 77, 14, 102, 6, 25, 115, 41, 45*, 100*, 156*, 78, 61, 0, 56*, 30, 42,

19, 40, 80
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England

Ian Bell

70, 65*, 162*, 6, 8, 6, 21, 59, 65, 3, 3, 0, 0, 71, 31, 115, 0, 4, 92, 9, 1, 38, 57, 18, 8,

100*, 28, 106*, 119, 4, 9, 9*, 50, 0, 60, 26, 0, 87, 7, 2, 71, 28, 109*, 3, 5, 97, 2, 11, 20,

9, 31, 0, 63, 67, 83, 74, 15, 54, 1, 34, 25, 54*, 11, 41, 9, 110, 16, 8, 21*, 0, 199, 31,

4, 50, 20, 24, 4, 17, 7, 1, 24*, 28, 4, 53, 8, 3, 72, 4, 5, 2, 140, 48, 78, 35, 5, 84, 39*,

138, 17, 128, 76, 68*, 53, 16, 1, 115, 103*, 52, 57*, 119*, 45, 0, 31, 159, 34, 235, 52,

13, 18, 61, 63*, 22, 76*, 13, 55, 11, 3*, 58, 4, 0, 22, 5, 28*, 1, 116*, 24, 26*, 11, 17,

75, 31, 6, 30, 6, 25, 109, 109, 74, 60, 4*, 6, 113, 45, 17, 5, 32, 72*, 6, 15, 60, 27, 0, 2,

16, 56, 9, 64, 8, 25, 16, 1, 167, 23, 58, 7, 143, 11, 1, 0, 0, 1, 29, 12, 1, 1, 60, 1, 11, 53,

65*, 1, 10, 13

Kevin Pietersen

57, 64*, 71, 20, 21, 0, 45, 23, 14, 158, 5, 19, 100, 42, 34, 1, 15, 87, 64, 4, 39, 7, 158,

142, 13, 41, 6, 21, 41, 38, 135, 16, 0, 96, 16, 92, 158, 2, 70, 60*, 21, 1, 41, 29, 26, 109,

226, 9, 68, 0, 28, 37, 134, 13, 19, 41, 101, 31, 18, 1, 45*, 1, 30, 42, 6, 31, 17, 129, 34,

3, 26, 42, 115, 152, 45, 13, 4, 94, 100, 13, 4, 1, 144, 97, 1, 51, 32, 41, 72*, 10, 102, 0,

49, 69, 8, 32, 44, 40, 81, 31, 0, 6, 7, 12, 99, 32, 45, 74*, 18, 10*, 64, 9, 22, 80, 6, 23,

0, 43, 227, 0, 3, 51, 36, 3, 2, 72, 85, 202*, 1, 29, 63, 63, 175, 3, 30, 151, 42*, 32, 13,

80, 78, 42, 16, 149, 12, 17, 2, 186, 54, 0, 73, 6, 0, 12, 73, 14, 64, 2, 5, 113, 8, 26, 44,

50, 62, 18, 26, 4, 53, 19, 45, 71, 49, 3, 6

Matt Prior

126*, 21, 75, 40, 0, 62, 1, 42, 11, 7, 0, 12*, 0, 63, 79, 4, 19*, 53*, 33, 2, 64, 0, 39, 15*,

131*, 61, 42, 63, 56, 14, 8, 61, 41, 37*, 22, 18, 4, 4, 0, 60, 76, 4, 14, 0, 0*, 7, 62, 16,

93, 6, 102*, 15, 84*, 5, 22, 0, 27*, 12, 10, 85, 118, 126, 4, 0, 71, 103*, 1, 73, 5, 18*, 7,

41, 11, 19, 16, 60, 40, 68, 7, 27, 73, 48, 91, 21, 41, 57, 23, 23*, 82, 73, 110*, 0, 0, 39,

4*, 1, 31, 6, 1*, 30, 17, 0, 47, 0*, 0, 4, 0, 69, 8, 26, 86, 16, 27*, 10, 5, 23, 12
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Andrew Strauss

112, 83, 62, 10, 0, 6, 137, 35, 24, 5, 90, 12, 14, 0*, 126, 94*, 25, 136, 45, 39, 147, 0,

44, 0, 69, 8, 2, 37, 48, 6, 6, 106, 35, 23, 129, 1, 9, 23, 12, 0, 28, 46, 18, 13, 128, 4, 48,

30, 16, 7, 55, 30, 128, 42, 36, 116, 38, 54, 12, 11, 14, 34, 42, 0, 50, 31, 29, 24, 33, 24,

15, 6, 0, 77, 13, 96, 18, 4, 55, 6, 32, 43, 2, 8, 44, 0, 177, 63, 60, 106, 37, 44, 27, 0, 20,

25, 6, 58, 123, 108, 0, 21*, 7, 9, 6*, 169, 14, 142, 38, 142, 14, 16, 14*, 26, 30, 17, 161,

32, 69, 3, 32, 55, 75, 46, 1, 54, 2, 45, 0, 22, 83, 82, 21, 45, 0, 25, 53*, 15, 4, 13, 0, 110,

1, 52, 15, 69, 60, 20, 4, 0, 3, 22, 32, 32, 16, 87, 40, 26, 27, 61, 0, 122, 1, 141, 45, 17,

0, 27, 37, 22, 20, 1

Graham Thorpe

6, 114*, 0, 13, 37, 60, 16, 14, 0, 20, 86, 3, 7, 84, 9, 72, 73, 79, 15*, 28, 67, 51, 9, 10,

47*, 26, 83, 123, 0, 20, 61, 52, 42, 30, 0, 94, 0, 19, 76, 74, 38, 13, 34, 17, 2, 27, 12*,

20, 59, 21, 17*, 89, 21, 45, 77, 3, 16, 54, 9, 13, 2, 5, 50*, 119, 108, 18, 2, 138, 21, 30*,

3, 7, 15, 15, 53, 82*, 27, 62, 0*, 8, 39, 32, 19, 10, 3, 103, 36*, 5, 84*, 10, 43, 10, 0, 0,

0, 77, 9, 6, 21*, 7, 7, 27, 25*, 10, 44, 0, 46, 40, 10, 118, 5, 79, 0, 18, 64*, 7, 12, 59,

46, 113*, 32*, 80, 138, 10, 20, 2, 23, 62, 17, 200*, 11, 1*, 42, 3, 27, 65, 123, 32, 4, 1,

124, 64, 18*, 0, 54, 43, 10, 57, 41, 13, 19, 19, 90, 13*, 119*, 10, 23*, 3, 51*, 34, 45,

104*, 19, 38, 61, 54, 114, 4, 31*, 1, 118*, 12, 26, 0, 1, 86, 8, 42*, 66*

Marcus Trescothick

66, 38*, 1, 78, 7, 71, 1, 30, 10, 13, 24, 122, 57, 23, 13, 23, 10, 36, 10, 117, 0, 76, 15, 3,

69, 32, 37, 10, 55, 24, 66, 46, 99, 12, 8, 9*, 0, 33, 37, 88, 0, 14, 13, 76, 161, 81, 23*,

57, 58*, 72, 1, 35, 0, 34, 4, 37, 37, 19, 22, 59, 43, 31, 52*, 6, 23, 24, 0, 59, 4, 219, 69*,

113, 32, 60, 1*, 23, 24, 36, 14, 70, 0, 7, 6*, 1, 4, 2, 42, 16, 88, 86, 2, 132, 30*, 63, 9,

16, 45, 105, 107, 0, 12, 30, 4*, 47, 0, 18, 132, 28, 0, 16, 180, 20, 7, 194, 151, 4, 44, 90,

21, 63, 41, 65, 27, 43, 33, 193, 5, 48, 0, 50, 0, 106, 27, 0, 24, 31, 16, 18, 5, 28, 58, 6, 4
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Jonathan Trott

41, 119, 28, 69, 18, 20, 42, 5, 8, 39, 14, 64, 19, 226, 36*, 3, 38, 26, 55, 53*, 12, 36,

184, 29, 135*, 78, 4, 31, 168*, 0, 203, 2, 58, 4, 70, 22, 4, 2, 12, 112, 64, 5, 58, 13, 35,

17*, 17, 71, 10, 35, 30*, 8, 63, 0, 17, 0, 87, 3, 44, 143, 45, 52, 121, 27, 37, 39, 56, 28,

76, 48, 0, 58, 0, 5, 11, 49, 23, 40, 59, 10, 9, 0, 4, 59, 0, 0, 9

Michael Vaughan

33, 5, 21, 29, 42, 5, 69, 4, 41, 29, 76, 10, 9, 26, 8, 32, 120, 14, 11, 31*, 64, 27, 0, 7,

34, 27, 36, 64, 115, 46, 36, 24*, 0, 100, 197, 61, 15, 195, 47*, 33, 0, 177, 41, 34, 9, 11,

145, 0, 183, 8, 20, 156, 22, 33, 29, 1, 5, 15, 21, 23, 13, 48, 81*, 54, 25, 24, 8, 52, 105,

18, 14, 15, 11*, 0, 23, 17, 32, 7, 140, 13, 61, 10, 103, 101*, 12, 3, 12, 33, 66, 10, 15,

18, 10, 11, 20, 82*, 54, 0, 26*, 120, 44, 3, 4, 24, 1, 166, 14, 58, 0, 11, 45, 2, 9, 58, 13,

103, 41, 40, 19, 48*, 79, 30, 9, 124, 11, 42, 37, 5, 87, 61, 1, 24, 63, 9, 32, 13, 2, 4, 106,

30, 48, 16, 2, 0, 21, 0, 17

India

Rahul Dravid

95, 84, 8, 40, 24, 34, 31, 23, 7, 56, 7, 27*, 2, 12, 148, 81, 43, 51*, 57, 78, 2, 37*, 92,

69, 2, 6, 34, 92, 93, 85, 52, 56, 86, 23, 6, 118, 44, 0, 28, 190, 103*, 53, 10, 33, 29, 24,

13, 107, 1, 144, 48, 1, 33, 12, 35, 6, 9, 14, 29, 0, 22, 37, 17, 18, 28, 41*, 200*, 70*,

162, 9, 39, 25, 180, 81, 4, 44, 68*, 26, 12, 61*, 15, 75, 36, 36, 2, 11, 2, 87, 86, 7, 26*,

3, 65, 1, 6, 144*, 67, 36, 17, 14, 91, 5, 30, 46, 63, 13, 115, 148, 217, 100*, 11, 6*, 14,

17, 76, 7, 9, 39, 222, 73, 13, 5, 1, 43*, 233, 72*, 49, 92, 38, 91*, 6, 33, 0, 270, 0, 60,

26, 21, 2, 31*, 27, 54, 80, 47*, 0, 160, 50, 110, 135, 22, 16, 77, 98, 0, 23, 32, 24, 53,

128*, 103, 5*, 3, 2, 40, 71, 95, 42*, 52, 9, 49, 62, 146, 22, 68*, 81, 68, 32, 1, 11, 5, 29,

47, 61, 2, 129, 2, 9, 37, 11*, 55, 12, 38, 34, 50, 8*, 19, 42, 5, 16, 53, 38, 93, 3, 18, 11*,

111, 3, 17, 29, 18*, 14, 10, 2, 44, 10, 68, 51, 5, 39, 11, 11, 0, 3, 3, 4, 136, 0, 66, 8*,

83, 62, 35, 60, 177, 38, 144, 74, 4, 24, 111*, 111*, 18, 44, 3, 23, 7, 77, 13, 1, 21*, 104,



124 Appendix C. Model code and data

1, 45, 191, 14, 43, 25, 2, 5, 31, 40, 112, 5, 55, 5, 34*, 103*, 36, 117, 6, 22, 18, 146*,

13, 54, 31, 119, 82, 33, 68, 10, 5, 29, 9, 47, 1, 25

Sourav Ganguly

131, 136, 48, 66, 21*, 6, 0, 39, 41, 16, 0, 23, 30, 73, 60, 42, 6, 22, 8, 0, 147, 45, 109,

99, 173, 11, 3, 30*, 65, 17, 16, 47, 36, 5, 48, 11, 101*, 54, 2, 13, 62*, 17, 24, 56, 78, 2,

64*, 0, 125, 53, 60, 43, 31, 17, 1, 25, 2, 31, 1, 13, 84, 27, 65*, 30, 8, 1, 23, 48, 22, 4,

5, 9, 0, 15, 4, 18, 98*, 1, 30, 14, 30, 42, 4*, 47, 5, 16*, 0, 38, 136, 20, 5, 25, 75*, 48,

60*, 45, 36, 28, 5, 0, 68, 99, 128, 51, 4, 0, 29, 16, 17, 2, 5, 5, 100*, 25, 144, 2, 12, 37,

73, 16, 77, 45, 5, 9, 57, 40, 71, 88, 21, 12, 12, 1, 2, 101, 16, 5, 40, 39, 34, 37, 51*, 25,

0, 26, 66, 46, 100, 13, 15, 34, 40, 79, 2*, 37, 57, 8, 48, 102, 46, 239, 91, 43, 40, 67, 51,

9, 0, 7, 18, 24, 0, 87, 87, 13*, 23, 4, 0, 16, 35, 18, 47, 26*, 102, 27, 5, 32*, 85, 0

VVS Laxman

11, 51, 14, 1, 5, 35*, 0*, 64, 27, 0, 6, 19, 56, 95, 6, 15, 23, 0, 35, 8, 5, 67, 11, 25, 41,

0, 5, 1, 7, 167, 16, 0, 18*, 20, 12, 59, 281, 65, 66, 28, 38, 15, 20, 32, 29, 89, 28, 75, 12,

13, 69, 69*, 74, 1, 43, 130, 65*, 23, 43*, 74, 22, 14, 6, 40, 45, 24, 48, 154*, 0, 0, 23, 4,

64, 44, 104*, 67*, 75, 24*, 148, 32, 19, 18, 178, 29, 11, 13, 71, 31, 3, 4, 13, 2, 1, 69,

9, 38, 32, 9, 58, 0, 24, 79*, 5, 140, 8, 5, 69, 11, 104, 5, 0*, 90, 8*, 19, 21, 0, 0*, 29,

31, 0, 100, 63, 18, 16, 28, 73, 50*, 15, 13, 1, 15, 39, 54, 51, 46*, 72*, 6*, 112*, 5, 14*,

26, 42, 109, 20, 27, 79, 51, 12, 39, 3, 35, 50, 56, 21, 39, 13, 25, 61*, 0, 42*, 12, 200*,

59*, 64, 4, 24, 26, 0, 15, 30, 76, 124*, 4, 61, 0, 51*, 63, 62, 7, 69*, 143*, 22, 69, 29,

56, 103*, 2, 73*, 40, 91, 74, 12, 7, 8, 38, 96, 15, 32*, 12, 0, 85, 87, 56, 3*, 10, 56, 54,

4, 30, 2, 2, 24, 1, 58*, 176*, 32, 31, 2, 1, 2, 66, 31, 0, 18, 35

Virender Sehwag

105, 31, 13, 20, 66, 74, 84, 27, 106, 0, 8, 12, 147, 61, 33, 35, 10, 2, 12, 1, 25, 29, 17,

130, 1, 45, 0, 47, 47, 195, 11, 72, 47, 309, 39, 90, 0, 39, 0, 155, 12*, 22, 58, 8, 5, 164,

88, 10, 13, 10, 173, 36, 81, 15, 201, 38, 44, 44, 14*, 76, 7, 36, 20, 0, 254, 31, 5, 4, 2, 0,
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11, 76*, 6, 0, 36, 41, 180, 31, 65, 0, 4, 4, 33, 0, 8, 40, 4, 29, 43, 63, 151, 319, 6, 17, 8,

22, 25, 13, 201*, 50, 21, 34, 45, 6, 35, 90, 1, 16, 66, 92, 9, 83, 0, 17, 24, 34, 22, 48, 12,

16, 51, 131, 293, 52, 45, 56, 0*, 109, 16, 165, 109, 31, 99, 109, 0, 59, 17, 30, 7, 173, 1,

96, 54*, 74, 0, 63, 25, 32, 13, 11, 0, 0, 8, 33, 55, 55, 38, 37, 60, 67, 7, 30, 4, 0, 10, 18,

62, 47, 43, 38, 117, 25, 30, 9, 23, 49, 0, 2, 19, 6

Sachin Tendulkar

15, 59, 8, 41, 35, 57, 0, 24, 88, 5, 10, 27, 68, 119*, 21, 11, 16, 7, 15, 40, 148*, 6, 17,

114, 5, 0, 11, 111, 1, 6, 0, 73, 50, 9*, 165, 78, 62, 28, 104*, 71, 142, 96, 6, 43, 11*, 34,

85, 179, 54, 40, 10, 4, 0*, 52*, 2, 24, 122, 31, 177, 74, 10, 0, 42, 7, 18, 2, 61, 36, 15,

4, 169, 9, 35, 9, 7, 15*, 88, 92, 4, 83, 143, 139, 8, 23, 15, 148, 13, 4, 155*, 79, 177, 31,

34, 7, 47, 113, 67, 0, 136, 6, 29, 0, 9, 53, 124*, 18, 126*, 15, 44*, 217, 15, 61, 0, 116,

52, 45, 4, 97, 8, 21, 20, 18, 122, 39, 201*, 76, 65, 10, 10, 126, 17, 74, 36*, 20, 69, 155,

15, 1, 22*, 88, 103, 26, 90, 176, 36, 42, 79, 117, 0, 0, 8, 0, 41, 86, 16, 12, 34, 92, 193,

54, 35, 43, 16*, 36, 176, 8, 51, 9, 32, 8, 7, 55, 1, 0, 1, 37, 0, 44, 241*, 60*, 194*, 2, 8,

1, 8, 2, 5, 55, 3, 20, 32*, 248*, 36, 94, 52, 52, 41, 16, 22, 109, 16, 23, 19, 14, 23, 26,

16, 28*, 4, 1, 34, 44, 14, 63, 0, 64, 14, 101, 31, 122*, 37, 16, 91, 1, 82, 1, 1, 56*, 82,

62, 15, 154*, 12, 71, 13, 153, 13, 0, 27, 12 5, 31, 6, 14, 13, 49, 88, 10*, 68, 47, 109,

12, 37, 103*, 11, 5, 160, 49, 64, 62, 9, 4, 100*, 40, 53, 105*, 16, 143, 7, 100, 106, 8,

84, 203, 41, 54, 98, 38, 214, 53*, 40, 12, 13, 61, 36, 111*, 13, 6, 146, 14*, 34, 12, 16,

56, 1, 40, 23, 91, 7, 76, 38, 94, 3, 73, 32, 41, 80, 15, 8, 25, 13, 19, 17, 27, 13, 8, 8, 76,

5, 2, 81, 13*, 7, 37, 21, 32, 1, 10, 74

New Zealand

Stephen Fleming

16, 92, 54, 11, 41, 39, 14, 11, 48, 15, 4, 31, 79, 53, 56, 47, 30, 17, 27, 35, 0, 66, 16, 41,

25, 0, 49, 21, 84, 3, 1, 22, 39, 56*, 19, 92*, 67, 4, 129, 9, 1, 0, 62, 11, 51, 2, 59, 52,

27, 27, 75, 91, 0, 10, 4, 0, 0, 36, 19, 78, 174*, 14, 10, 78, 3, 42, 17, 0, 18, 27, 25, 1,
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5*, 38, 66*, 4, 43, 73, 2, 31, 48, 64*, 66, 67, 21, 8, 16, 60, 30, 2, 11, 12, 9, 57, 99, 14,

8, 14, 22, 55, 86, 5, 32, 51*, 0, 57, 71, 105, 4, 4, 61, 12, 48, 3, 11, 1, 1, 2, 66, 130, 34,

6, 5, 25, 21, 32, 274*, 69*, 0, 33, 1, 8, 30, 192, 0, 0, 24, 27, 4, 31*, 30, 9, 34, 4, 97,

11, 117, 45, 29, 202, 0, 11, 83, 3, 18, 17, 0, 1, 65, 3, 16, 41, 88, 73, 65, 14, 33, 97, 0,

6, 262, 46, 37, 48, 0, 0, 27, 40, 17, 43, 54, 14, 87, 41, 66, 34, 31, 59, 66

Mark Richardson

6, 13, 99, 23, 77, 26, 60, 46, 75, 1, 59, 46, 73*, 106, 26, 57, 30, 9, 30, 143, 83, 2, 76,

60, 4, 5, 25, 8, 32, 41, 0, 95, 71, 89, 14*, 13, 28, 85, 6*, 55, 55, 6, 21, 145, 44, 15, 82,

41, 4, 45, 10, 14, 37, 93, 101, 13, 40, 73, 49, 15, 28, 19, 4, 9, 16

Jesse Ryder

1, 38, 91, 39*, 30, 24, 13, 3, 89, 57, 59*, 102, 21, 201, 3, 0, 42, 24, 23, 38, 103, 70, 20,

59, 22, 22, 0, 0, 17, 6, 36, 0, 16

Pakistan

Inzamam ul-Haq

8*, 0, 8, 26, 5, 19, 23, 75, 10, 6, 7, 26, 123, 21, 57*, 38, 14, 33, 43, 20*, 135*, 5, 20,

81, 7*, 100*, 9, 58*, 14, 0, 66, 3, 19, 95, 71, 65, 47, 101, 83, 95, 50, 26, 21, 0, 5, 62,

27, 40, 39, 59, 0, 82, 148, 70, 2, 65, 35, 0, 14, 1, 12, 43, 54*, 8, 56, 96, 5, 92*, 177, 4,

0, 6, 4, 24, 12, 13, 10, 14, 0, 97, 9, 21*, 19, 2, 10, 51, 26, 6, 0, 4, 88, 12, 12, 118, 22,

8, 44, 20, 58*, 9, 86, 138, 135, 8, 29, 55, 68, 12, 13, 112, 63, 0, 71, 142, 27, 130, 5, 20,

13, 20, 114, 85, 105*, 43, 30, 29, 99, 329, 39, 112, 11, 18, 13, 32, 60, 0, 35*, 43, 10,

138*, 23, 60, 51, 34, 72*, 77, 0, 118, 15, 9, 32, 3, 117, 1, 0, 57, 86, 30, 13, 184, 31*,

50, 117*, 1, 0, 53, 72, 109, 100*, 97, 1, 119, 31, 48, 15, 69, 56*, 0, 13, 26, 37, 31, 0,

31, 10, 18, 58*, 42, 35, 92*, 1, 6, 22, 14, 3
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Mohammad Yousuf

5, 1, 60, 64, 9, 52, 28, 9, 11, 75, 14, 120*, 53, 26, 3, 0, 2, 56, 83, 0, 95, 75, 17, 2, 18,

0, 32, 18, 8, 88, 7, 11, 0, 115, 19, 103*, 42, 2, 11, 41, 124, 77, 117, 24, 51, 42, 203, 0,

16, 26, 6, 4, 49, 102*, 72, 204*, 6, 7, 29, 63, 0, 159, 12, 42, 0, 50, 46, 15*, 64*, 8, 28,

60, 88*, 35, 112, 72, 13, 48, 17, 44, 46, 1, 1, 27, 111, 12, 8, 30, 6, 68, 104, 22, 37, 5,

16, 78, 20, 223, 173, 65, 126, 0, 97, 17, 14*, 202, 48, 38, 15, 192, 8, 128, 192, 56, 191,

102, 124, 32, 18, 83, 18, 25, 63*, 27, 18, 6, 44*, 24, 10*, 112, 12, 10, 6, 90, 23, 17, 41,

0, 83, 0, 89, 22, 61, 46, 19, 7, 23, 56, 33, 0, 10

South Africa

Herschelle Gibbs

31, 9, 17, 5, 0, 25, 31, 7, 54, 1, 37, 2, 4, 2, 4, 35, 49, 42, 25, 2, 51, 34, 211*, 120, 0,

85, 48, 10, 2, 26, 29, 3, 47, 46, 4, 0, 1, 8, 83*, 34, 87, 34, 19, 85, 45, 18, 51, 147, 74,

107, 1, 196, 12, 78, 9, 14, 21, 32, 10, 34, 47, 12, 39, 51, 104, 41, 114, 92, 7, 11, 25*,

228, 17, 21, 179, 9, 49, 19, 28, 0, 2, 183, 9, 27, 59, 98, 20, 60, 6*, 142, 33, 142, 192,

8*, 40, 47, 80, 61, 77, 16, 0, 4, 15, 36, 4, 24, 161, 98, 14, 4, 8*, 47, 5, 49, 34, 8, 23,

21, 33, 94, 9, 27, 67, 18, 0, 9, 17, 16, 53, 6, 2, 19, 18, 0, 92, 0, 0, 63, 9, 7, 0*, 94, 2,

40, 54, 18, 13, 16, 63, 8, 25, 0, 0, 27

Jacques Kallis

1, 7, 6, 39, 0, 2, 2, 61, 15, 101, 16, 45, 15, 15, 15, 43, 22, 10, 69, 3, 49, 12, 0*, 61, 0,

132, 47, 11, 40, 3, 53, 57*, 30, 3, 11, 23*, 110, 88*, 83, 27, 7, 148*, 17, 4, 64, 115, 12,

1, 85*, 0, 69, 105, 25, 5, 36*, 95, 29, 40, 16, 87, 19, 0, 160, 13, 12, 23, 79*, 21, 15,

49, 7, 50, 30, 53, 0, 11, 20, 5, 30*, 17, 51, 157*, 42*, 189*, 68, 21*, 24, 89*, 5, 65*,

38, 99, 4, 34, 3, 8, 23, 73, 16, 61*, 75*, 139*, 75, 84, 6, 105, 31, 27, 13, 6, 41, 66, 35,

29, 18, 10, 43, 158, 44, 177, 73, 130*, 130*, 92, 150*, 40, 71, 0, 1, 59, 52*, 13, 3, 37,

28*, 121, 55, 0, 61, 162, 10, 149, 66, 33, 0, 8, 136*, 54, 58, 0, 109*, 39, 19*, 78, 147,

44, 39*, 23, 9, 111, 50*, 6, 36, 114, 7, 37, 27, 38, 62, 71, 9, 13, 12, 27, 54, 32, 18, 60*,
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24, 91, 28, 51, 155, 100*, 59, 107*, 29, 186, 131, 0, 85, 36, 22*, 74, 17, 7, 39*, 13, 19,

132, 1, 15, 7, 13, 4, 64, 5, 2, 9, 16, 24, 63, 57, 26, 37, 4, 27, 45, 22, 93, 102, 120, 4,

75, 3, 108, 46, 7, 173, 10, 20, 28, 40, 110, 62*, 43, 0*, 201*, 10, 17, 161, 109*, 0, 2*,

54, 2, 31, 0, 0, 224, 0, 113, 6, 182*, 19, 27, 3, 31, 147, 49, 58, 46, 2, 37, 60, 8, 50, 7,

2, 21, 0, 34, 115

Gary Kirsten

16, 67, 41, 43, 7, 47, 35, 29, 10, 41, 72, 44, 7, 65, 2, 0, 9, 33, 29, 66*, 64, 25, 62, 42,

16, 76, 1, 13, 110, 1, 8, 51, 69, 23, 41*, 17, 20, 102, 133, 43, 7, 2, 2, 103, 0, 29, 1, 9,

8, 0, 43, 16, 6, 98, 56, 100*, 4, 83, 0, 11, 0, 77, 108*, 3, 20*, 0, 25, 38, 44, 62, 15, 13,

75*, 12, 4, 9*, 210, 7, 6, 6, 3, 62, 7, 29, 2, 26, 71*, 0, 5, 0, 134, 128, 65, 40, 12*, 13,

15, 2, 11, 275, 80, 0, 50, 20, 79, 12, 55, 0, 13, 11, 40, 31, 1, 49, 47*, 10, 180, 34, 52,

150, 24, 23, 22, 0, 0, 8, 9, 0, 14, 220, 31*, 65, 73, 30*, 4, 5, 47, 7, 10, 10, 18, 153, 1,

12, 7, 87, 21, 64, 150, 160, 55, 11, 11, 56, 19, 44, 1, 108, 130, 60, 90, 29, 53*, 46, 54,

118, 137, 16, 10*, 10, 137, 34*, 1, 1, 1, 76

Ashwell Prince

49, 28, 10, 20, 0, 48, 2, 0, 3, 20, 5, 139*, 45, 23, 131, 28, 8, 6, 26, 119, 18, 17, 27, 33,

7, 93, 9, 9, 11, 108*, 4, 43*, 1, 61, 86, 17, 24, 97, 121, 0, 26, 38*, 138, 2, 22, 19, 59*,

36, 45, 63, 11, 1, 25*, 13, 20, 10, 98, 12*, 123*, 10, 38, 2, 23, 5, 2, 16, 22*, 101, 9*,

149, 39, 2, 4, 24, 59*, 162*, 150, 45, 0, 2, 16, 0, 15, 19, 0, 1, 23, 57, 16*, 9, 78*, 13,

39*, 47, 22, 0, 50, 2, 39, 11, 7

Graeme Smith

3, 68, 1, 42, 200, 24, 73, 15, 0, 16, 13*, 151, 16, 15, 277, 85, 259, 35, 5, 2, 14, 18, 19,

33, 12, 2, 65, 132, 44, 14, 42, 24, 139, 23*, 25, 5, 88, 0, 47, 125*, 23, 74, 65, 17, 37,

47, 0, 71, 0, 55, 9, 5, 74, 2, 29, 67*, 25, 3, 121, 41, 2, 34, 148, 41, 104, 126, 50*, 12,

0, 34, 30, 22, 25, 39, 5, 19, 16, 0, 40, 45, 7, 25, 63, 68, 5, 10, 5, 58, 94, 55, 0, 32, 28,

10, 64, 33, 42, 25, 46, 133, 1, 9, 2, 28, 11, 28, 85, 147, 10, 62, 232, 73, 35, 34, 69, 35,
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8, 107, 44, 3*, 7, 154*, 46, 0, 157, 27, 48, 108, 62, 75, 30*, 3, 0, 69, 2*, 0, 12, 75, 22,

30, 183, 105, 6, 4, 20, 23, 90, 132, 46, 70, 10, 62, 9, 37, 6, 29, 37, 101*, 11, 36, 61, 15,

26, 16, 0*, 53, 115, 13, 55*, 5, 41, 131, 52, 52, 14, 23, 10, 23, 122, 0, 16, 84, 1, 54, 24,

52, 19, 29, 5, 68, 44, 47, 27*, 10, 4, 9, 14, 5, 3

Sri Lanka

Tillakaratne Dilshan

9, 163*, 0, 37, 13, 7, 31, 5, 6, 28*, 5, 17, 36, 0, 5, 10, 63, 100, 83, 104, 6, 0, 43, 0, 31,

10, 17*, 14, 35, 21, 25, 1, 3, 23*, 28, 9, 73, 32, 27*, 36, 49, 86, 168, 8*, 0, 32, 65, 65,

22, 33, 69, 8*, 22, 11, 0, 69, 27, 59, 8, 32, 45, 4, 18, 79, 0, 17*, 84, 20, 4, 62, 25, 125*,

0, 38, 23, 14, 47, 162, 143, 0, 8, 145, 28, 22, 20, 44, 92, 123*, 29, 33, 112, 0, 11, 109,

16, 25, 68*, 54, 14, 41, 13, 0, 54, 4, 26, 50, 10, 193, 4, 12, 4, 36, 83, 6, 6, 47, 4, 78, 5,

11, 0, 14, 35, 101, 56, 121, 28, 5, 14, 147, 11, 11, 0, 34, 5, 54, 126, 0, 57

Sanath Jayasuriya

35, 18, 12*, 11, 66, 77, 35*, 81, 45, 19, 1*, 2, 4, 6*, 0, 31*, 44, 16, 65, 0, 22, 1, 9, 1,

10, 48, 112, 0, 41, 18*, 0, 50, 20, 3, 31, 62, 72, 113, 85, 0, 90, 17, 340, 32, 199, 53, 17,

50, 37, 6, 0, 5, 68, 17, 0, 51, 16, 10, 59, 21, 13, 8, 213, 24*, 18, 18, 0, 21*, 0, 49, 6, 7,

4, 16*, 17, 56, 30, 6, 24, 10, 26, 8, 32, 21, 188, 148, 28, 0, 85, 17, 0, 26, 8, 0, 16, 16,

14, 9, 0, 45, 23, 111, 6*, 3, 6, 30, 89, 25, 6*, 16, 55, 85, 8*, 92, 139, 28, 36, 88, 1, 18,

8, 12, 35, 26, 145, 85, 32, 0, 50, 82, 9, 8, 72*, 26, 13, 48, 17, 32, 27, 85, 35, 5, 1, 131,

71, 51, 157, 48, 8, 16, 13, 22, 12, 74, 43, 19, 38, 253, 26, 107, 48, 5*, 22, 2, 3, 15, 2,

36, 46, 13, 6, 13, 14, 4, 4, 4, 47, 73, 5, 10, 0, 31, 7, 39, 3, 45, 10, 78

Mahela Jayawardene

66, 16, 7, 52, 54, 167, 16, 11, 9, 242, 4, 50, 46, 9, 46, 21, 17, 91, 6*, 2, 42, 35, 36, 10,

1, 29, 77, 1, 72, 9, 2, 167, 18, 1, 34, 101*, 98, 7, 0, 45, 17, 23, 61, 101, 18, 71, 11, 28,

104, 25, 139, 150, 99, 88, 16, 39, 18, 56, 76, 17*, 68, 12*, 107, 14*, 47, 59, 17, 28, 0,
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39, 1, 44, 40, 58, 15, 32*, 45, 10, 32, 17, 86*, 45, 52, 134, 68, 21, 17, 13, 29, 37, 37,

100*, 14, 44, 43, 6, 237, 5, 82, 3, 0, 57, 16, 32, 141, 1, 13, 3, 41*, 6, 43, 63, 2, 71, 60,

67, 0, 57, 30, 23*, 49, 1, 82, 4, 15, 61, 119, 0, 5, 0, 45, 374, 13, 123, 8, 0, 0, 31, 127,

49, 165, 14, 49, 104, 0, 1, 65, 195, 213*, 136, 33, 26, 12, 136, 86, 5, 2, 50*, 3, 166, 11,

22, 240, 22, 30, 30, 0, 19, 37*, 79, 2, 114, 27, 92, 96, 275, 47, 10, 29, 12, 48, 174, 5,

56, 5, 59, 58, 2, 4, 15, 49, 25, 4, 6, 11, 105, 4, 51, 51, 30, 15, 31, 14, 30, 12, 180, 5,

105, 64, 62, 14, 0, 1*, 12, 11, 91, 4, 5, 12, 19, 3, 0, 72, 60, 203*, 72, 11, 55, 18, 22, 79,

3, 10, 165, 0, 59, 26, 4, 54

Hashan Tillakaratne

0, 6, 0, 55, 21, 12, 26, 31, 3, 20, 16, 49, 42*, 11, 14, 82, 1, 93, 93*, 36*, 28, 2, 51, 86,

92, 33*, 9, 9, 37, 0, 9*, 7, 47, 0, 80, 5, 40, 34, 8, 9, 83*, 1, 1, 15*, 116, 9, 74, 36, 108,

44*, 48, 115, 0, 24, 50, 6, 119, 14, 38, 65, 3, 20, 126*, 55*, 8, 2, 10, 103, 54, 10, 24*,

1*, 14, 9, 25, 18*, 44, 7, 0, 22, 13, 55, 0, 10, 43, 40, 0, 14, 9, 11, 10, 16, 136*, 10*,

105*, 87, 7*, 204*, 96, 37, 3, 19*, 17*, 20, 39, 20, 32*, 18, 5*, 24, 27, 104*, 6, 144,

93, 13, 13, 7, 0, 1, 45, 20, 12, 33, 25, 16, 7, 74*, 17

Thilan Samaraweera

103*, 77, 29, 3*, 87, 123*, 17, 76, 8, 58, 11, 45, 1, 3, 23*, 142, 36*, 15, 41, 53, 6, 32*,

1, 32, 70, 0, 13, 19, 21, 21*, 100, 21, 13, 22, 88, 73, 17, 11, 51, 37, 0, 78, 138, 35*, 1,

0, 1, 5, 58, 20, 4, 64, 65, 4, 0, 6, 3, 8, 13, 20, 0, 56*, 6, 125, 127, 14, 67*, 35, 90, 62,

19, 77, 231, 24*, 214, 31, 34, 21, 6*, 6, 73, 159, 20, 143, 25, 70, 2, 78*, 1, 0, 0, 76*,

10*, 137*, 83, 52, 19*, 80, 58, 0, 9, 17*, 31, 87*, 26, 0, 17, 43, 36, 32, 102, 43, 11,

115*, 20, 36, 54, 47, 6, 15, 0, 73, 10, 17, 76, 7, 7, 49, 10, 1, 12, 0

Kumar Sangakkara

23, 24, 5, 25, 6, 74, 17, 32, 11, 3, 98, 58, 17, 95, 45, 0, 105*, 31, 13, 47, 54, 140, 15,

45, 55, 128, 42, 29, 56, 230, 14*, 10, 6*, 16, 1, 40, 32, 75, 26, 7, 35, 89, 67, 10, 27*,

56, 75, 12, 71, 19, 34, 10, 31, 22, 7, 5, 29, 22, 27, 11, 270, 2, 0, 74, 66, 58, 13, 232,
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64, 2, 59, 13, 138, 5, 16, 45, 34, 0, 6, 157*, 30, 5, 30, 3, 33, 41, 17, 69, 46, 0, 8, 185,

79, 16, 21, 65, 25, 18, 36, 66, 287, 14, 39, 4, 100*, 156*, 8, 6, 200*, 222*, 57, 192, 92,

152, 1, 46, 50, 21, 10, 14, 12, 68, 1, 144, 4, 43, 67, 5, 54, 70, 65, 104, 9, 14, 87, 46, 45,

130*, 8, 46, 50, 109, 31, 44, 11, 18, 137, 103, 219, 42*, 75, 28, 73, 4, 150, 1*, 11, 14,

26, 12, 2, 119, 10, 17, 48, 69, 79, 1, 2, 0, 108, 35, 34, 0, 14, 0, 21, 199*, 1, 192, 24*,

0, 74*, 5, 0, 16, 4, 63, 58, 27*, 142, 105, 139, 55, 75, 319, 105, 147, 61, 79, 55, 24, 76,

0, 72, 221, 21, 22, 59, 6, 1, 203, 5, 50, 18, 34, 0, 5, 40, 32, 18

West Indies

Shivnarine Chanderpaul

62, 19, 50, 77, 5, 75*, 4, 11*, 69, 61*, 18, 5*, 80, 82, 41, 8, 82, 14, 48, 71, 58, 40, 20,

8, 3, 52, 48, 42, 79, 137*, 3, 24, 58*, 0, 14, 95, 7, 21, 16, 34, 0, 28, 39, 118, 0, 45, 3*,

5, 74, 1, 4, 16, 4, 75, 6, 5, 38, 43, 14, 0, 5, 70, 12, 49, 12, 46*, 9, 16, 89, 31, 73, 22, 9,

18, 62*, 40, 16, 7, 7, 7, 74, 140, 1, 67*, 101*, 136*, 58, 59, 35*, 17, 51, 54, 36*, 27,

3, 140, 4, 16, 19*, 100, 31, 0, 21, 1, 104, 36, 39, 15, 15, 34, 74, 0, 109, 42, 27, 7, 0, 2,

42, 50, 0, 7, 101*, 128*, 97*, 45, 43, 76, 2, 14, 32, 203*, 35, 1, 53, 31, 127, 92, 153*,

28, 0, 69, 48*, 13, 24, 2, 7, 39, 10, 25, 4, 13, 15, 8, 36, 2, 24, 62, 30, 54, 97*, 11, 10,

13, 5, 81, 14, 36, 69, 74, 50, 116*, 136*, 70, 104, 8, 65*, 70*, 0, 23, 3, 18, 86*, 118,

11, 107*, 77*, 79*, 50, 76, 126*, 0, 20, 1, 55, 70, 147*, 6, 0, 4, 23, 47, 2, 2, 62, 27, 26,

15, 166, 22, 71*, 32, 8, 0*, 54, 27, 36*, 23, 30, 37, 12, 23, 116*, 49, 18, 59*, 118, 47,

4, 47, 103*, 12, 94, 68, 69, 87*, 91, 46, 11, 0, 9, 43*, 203*, 1, 150*, 26, 108, 36, 31*,

25, 41, 76, 1, 6, 31*, 122*, 20, 84*, 24, 47, 15, 25, 85*, 84*, 101*, 21, 4, 7, 9, 50, 46,

13, 1, 7, 25, 0

Chris Gayle

33, 0, 13, 13, 0, 81, 44, 10, 23, 40, 48, 11, 12, 25, 32, 175, 6, 52*, 9, 1, 44, 0, 0, 0, 12,

13, 52, 14, 0*, 32, 68, 15, 3, 73, 204, 7, 42, 23, 0, 88, 51, 38, 37, 71, 56, 0, 19, 27, 31,

0, 14, 13, 47, 0, 8, 26, 116, 32, 77, 107, 5, 9, 62, 16, 6, 15, 69, 141, 66*, 14, 66, 81, 7,
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82, 5, 42, 12, 105, 6, 1, 0, 5, 317, 4, 50, 33, 15, 10, 33, 56, 4, 25, 82, 30, 68, 30, 72,

69, 46, 2, 83, 3, 0, 0, 34, 11, 93, 40, 2, 30, 47*, 11, 13, 23, 16, 28, 52, 66, 29, 46, 38,

0, 51*, 45, 10, 14, 26, 74, 34, 197, 104, 30, 46, 6, 102, 4, 28, 0, 19, 54, 31, 1, 26, 165*,

102, 21, 6, 73, 50, 20, 10, 333, 30, 3, 0, 150, 64*, 8, 8, 24, 19, 25, 20*, 40, 4*, 101, 18,

33, 11, 35, 64, 10, 1, 80*, 42, 11, 64, 9*

Brian Lara

44, 5, 17, 64, 58, 0, 52, 4, 277, 52, 7, 16, 6, 96, 51, 44, 19, 18, 83, 28, 167, 43, 12, 26,

64, 375, 14, 0, 50, 3, 40, 91, 2, 147, 65, 9, 88, 43, 24, 14*, 65, 0, 53, 48*, 6, 54, 21,

87, 145, 152, 20, 179, 35, 40, 74, 26, 44, 2, 1, 2, 2, 9, 78, 132, 83, 78, 14, 19, 19, 45,

103, 30, 0, 4, 1, 115, 3, 37, 15, 1, 36, 37, 55, 17, 42, 47, 93, 30, 31, 13*, 89, 11, 7, 4,

39, 51, 79, 4, 33, 68, 14, 62, 3, 213, 8, 153*, 100, 7, 24, 1, 67, 75, 50, 6, 5, 13, 112,

4, 2, 0, 47, 0, 4, 0, 17, 182, 39, 16, 0, 35, 28, 47, 45, 12, 0, 83, 8, 19, 91, 81, 14, 178,

40, 74, 45, 221, 130, 0, 52, 47, 55, 4, 9, 35, 28, 73, 48, 26, 110, 91, 122, 14, 42, 68, 60,

209, 10, 80*, 29, 1, 191, 1, 202, 5, 72, 11, 115, 86, 34, 6, 23, 0, 0, 8, 36, 33, 400*, 53,

120, 11, 44, 95, 13, 0, 7, 79, 15, 196, 4, 176, 13, 4, 130, 48, 153, 0, 5, 36, 30, 14, 13,

45, 226, 17, 5, 0, 1, 1, 83, 18, 0, 7, 120, 10, 19, 26, 11, 61, 122, 216, 0, 49

Zimbabwe

Andy Flower

59, 1*, 81, 14, 9, 115, 62*, 63, 21, 12, 0, 62*, 26, 50, 10, 156, 14, 8, 37, 35, 7, 63, 6,

58*, 35, 45*, 2, 0, 3, 31, 11, 18, 61, 23, 112, 14, 6, 8, 20, 39, 7, 8, 67, 8, 105*, 2, 6,

65, 83, 44, 100*, 1, 49, 30, 41*, 0, 17*, 60*, 28, 0, 13, 39, 8, 14, 86, 15*, 74, 129, 14,

70*, 113*, 5, 66, 10, 24, 2, 42, 29, 22, 48, 65, 183*, 70, 55, 232*, 79, 73, 23, 51, 83,

45, 8*, 142, 199*, 67, 14*, 28, 114*, 42, 10, 8, 11, 6, 3, 3, 8, 92, 0, 29, 67, 30, 13
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