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Abstract

In the sport of cricket, player ability is generally assessed using traditional statistics, such

as batting and bowling averages. However, such measures fail to account for variations in

ability that may occur over the short-term, during a match, and over the long-term, between

matches. As a result, batting and bowling averages are unable to distinguish between players

whose abilities are declining, and those still yet to reach peak performance. This is a major

shortcoming of many proposed measures of cricketing ability; coaches and selectors often cite

recent performances, or form, as a reason for dropping or selecting certain players, but have no

means of quantifying how such factors may impact a player’s true, underlying ability.

In order to detect and quantify temporal variations in ability that may be observed over

the course of a playing career, a set of Bayesian parametric models are derived to measure and

predict the career trajectories of professional cricket players. Career trajectories are modelled

using a Gaussian process and aim to estimate a player’s past, present, and future abilities,

accounting for recent form, and a number of contextual variables that are frequently ignored

by alternative measures. A simulation-based method of predicting the outcome of upcoming

matches is then proposed. The match-simulation algorithm takes predictions of ability obtained

from the estimated batting and bowling career trajectories as inputs and attempts to quantify

the likely performance and contribution of individual players in a given match.

Generally speaking, the results suggest that underlying batting and bowling ability does not

fluctuate significantly in the short-term as a result of recent form. Instead, ability appears to

improve and deteriorate slowly over time, likely as a result of players gaining experience in a

variety of match conditions; participating in specialised coaching programmes; and due to changes

in physical attributes, such as fitness and eyesight. These findings may have practical implications

in the likes of player comparison, talent identification, and team selection policy, as coaches and

selectors are able to better quantify player ability and understand the individual-specific risks

and rewards of selecting certain players over others.
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Chapter 1

Introduction

1.1 Cricket: an overview

1.1.1 Laws of the game

Cricket is a bat-and-ball team sport originating in 16th century England and is played with

two teams of 11 players per side. A standard match consists of two innings, with each innings

consisting of a limited number of overs to be bowled. An over is defined by six balls. Teams

take turns at being the batting team and the bowling team and switch roles between innings.

The team batting first aims to score as many runs as possible in their innings, while the

team bowling first aims to restrict the number of runs scored by their opponent by getting

opposing batsmen out in one of a number of prescribed methods (also referred to as dismissing

the batsman or taking a wicket). The batting team’s innings ends when either (1) they have

faced all of their allotted balls, or (2) the bowling team has taken 10 wickets.

The team who bowled first then takes their turn to bat, with the aim of scoring more runs

than their opponent. The match ends when the second innings is concluded in one of the manners

outlined above, or, once the team batting second surpasses the target score set by the team

batting in the first innings. Whichever team has scored more runs at the end of the match is

declared the winner.

There have been a number of rule-changes over the course of the sport’s history, leading to

the three most popular variants of professional modern day cricket:

1. One-day or List A cricket

• Each team bats in one innings apiece, limited to 50 overs per innings.

• International List A cricket is referred to as one-day international or ODI cricket.

1
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2. Twenty20 or T20 cricket

• Each team bats in one innings apiece, limited to 20 overs per innings.

• International T20 cricket is referred to as T20I cricket.

3. First-class cricket

• Each team bats in two innings apiece and there is no limit to the number of overs

that can be bowled per innings.

• A match is played over four days, usually with a limit of 90 or 100 overs to be bowled

per day.

• If neither side has won after four days, the match is declared a draw.

• In international Test cricket, a match is played over five days.

1.1.2 Statistics in cricket

Cricket is a sport with a long-standing tradition of record-keeping; the first known recorded

scorecards date as far back as 1776 (Association of Cricket Statisticians and Historians, 1981).

Even at the grass roots level, a considerable quantity of data are collected each match, which

has lead to the sport’s strong statistical culture. Individual players are often obsessive over their

personal statistics; it would be a difficult task to find a cricketer who is not at least remotely

aware of their batting and/or bowling average. This has lead to cricket being colloquially referred

to as one of the most individual team sports.

“Cricket is a most precarious profession; it is called a team game but, in fact, no one is so

lonely as a batsman facing a bowler supported by ten fieldsmen and observed by two umpires to

ensure that his error does not go unpunished.”

– John Arlott in An Eye for Cricket (Arlott, 1979)

Batting and bowling averages

Traditionally, a player’s batting ability is recognised by their career batting average. The batting

average represents the average number of runs a player scores for every time they are dismissed.

Career batting average =

∑
Runs scored∑
Dismissals

(1.1)
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Similarly, a player’s bowling ability is traditionally measured using their career bowling

average. The bowling average represents the average number of runs a player concedes for every

wicket they take.

Career bowling average =

∑
Runs conceded∑
Wickets taken

(1.2)

As shown in Equations 1.1 and 1.2, batting and bowling averages are relatively straightforward

to calculate.

Economy rate and strike rates

Other commonly used statistical metrics in cricket to measure player ability are economy rate

and strike rate. Economy rate is a metric associated with bowling that indicates the average

number of runs conceded by a player, per over bowled.

The term strike rate has two different meanings, depending on whether it is being used in

the context of batting or bowling. From a batting perspective, strike rate represents the average

number of runs scored per 100 balls faced. While bowling, strike rate represents the average

number of balls bowled per wicket taken.

Career records

Together with batting and bowling averages, strike rates and economy rate are generally the

focal point of attention when assessing an individual player’s career record. These statistics

usually provide coaches, selectors, commentators and spectators with a fairly reliable assessment

of a player’s overall skill level. Other statistics, such as the number of times a player has passed

the significant milestones of 50 and 100 runs while batting, or taken five wickets in an innings

while bowling, are also of interest.

Given the author’s nationality and players’ interesting data, the career records for New

Zealand’s presently top ranked batsman (Kane Williamson) and bowler (Neil Wagner) are

presented as examples in Tables 1.1 and 1.2, and are used as ongoing references throughout

this thesis. Convention dictates that a player’s career record be split by match format. Test

cricket refers to international first-class cricket, one-day international (ODI) cricket refers to

international List A cricket, while T20I cricket refers to international T20 cricket. It is worth

noting, that a player’s first-class, List A and T20 records include both domestic and international

performances. Here, it is possible to observe that Williamson has played in all formats of cricket,

while Wagner has not participated in any ODI or T20I matches.



4 1.2. Sports analytics

Table 1.1. Career batting record for Kane Williamson.

Matches Innings Not outs Runs High score Average Balls faced Strike rate 100s 50s 4s 6s

Test 80 140 13 6476 242* 50.99 12543 51.63 21 32 706 14

ODI 151 144 14 6173 148 47.48 7551 81.75 13 39 563 49

T20I 60 58 7 1665 95 32.64 1330 125.18 0 11 170 36

First-class 148 253 20 11287 284* 48.44 21659 52.11 31 59 1319 34

List A 212 201 22 8294 148 46.33 10194 81.36 17 51 729 70

T20 181 173 21 4593 101* 30.21 3681 124.77 1 31 430 115

Table 1.2. Career bowling record for Neil Wagner.

Best bowling 5 wickets

Matches Innings Balls Runs Wickets (innings) Average Economy rate Strike rate (innings)

Test 48 90 10743 5480 206 7/39 26.60 3.06 52.1 9

First-class 174 319 36233 19420 729 7/39 26.63 3.21 49.7 36

List A 108 104 5276 4775 166 5/34 28.76 5.43 31.7 2

T20 76 72 1502 2198 79 4/33 27.82 8.78 19.0 0

1.2 Sports analytics

The application of statistical methods to analyse data collected and related to sporting activities

is commonly referred to as sports analytics. When analysing data pertaining to a particular sport,

the word ‘sports’ is often replaced with the sport in question, for example, cricket analytics.

Sports analytics are used by a wide sector of the sporting community, ranging from professional

teams competing in a diverse range of sporting codes, to individuals engaging in activities related

to sports gambling. Regardless of who is using sports analytics, the ultimate goal is to gain

a competitive advantage over the opposition, be that a rival team or a bookmaker. Such an

advantage may manifest itself through applying a unique strategy to the game, an innovative

change in approach to team selection policy, or a novel method of identifying talent in young,

up-and-coming players.

Clearly, cricket is a data-rich sport, with a well-entrenched statistical culture. However,

despite having all the requisite features of being an ideal sport to flourish in terms of analytics, few

advanced statistical metrics or modern methods of analysing player ability have been adopted by

the wider cricketing community. While batting and bowling averages might have been considered

cutting-edge analytics in the early 1800s, these types of summary statistics do not hold the same

weight in the 21st century. For a sport where a single match can continue for up to five days

and a single career can span more than 20 years, it seems inadequate to use simple summary

statistics to quantify the past, present, and future abilities of individual players.

It is important to note that sport is not an exact science and that there is a certain art in

identifying talent and estimating player value based on the eye test. However, rather than using

data as an additional tool in the decision making process, there are still plenty of examples in
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modern day cricket of coaches and selectors relying solely on gut feel. While a coach’s instincts

and intuitions may generally be correct — after all, this is why they are coaches — it is inevitable

they will occasionally miss out some finer aspects of the game that can be explained by the data.

Consequently, on the analytics front, cricket finds itself playing catch-up with a number of global

sports, namely its American cousin, baseball, with whom it shares a number of similarities.

1.2.1 Origins

The mainstream popularisation of sports analytics is frequently credited to the emergence of

sabermetrics in baseball, referring to the analysis of baseball data and statistics that measure

in-game performance. The origin of sabermetrics is documented in the book Moneyball: The

art of winning an unfair game (M. Lewis, 2003), later popularised in the 2011 Hollywood film

adaptation, Moneyball. The book and film recount the innovative statistical approach taken by

a financially limited Major League Baseball (MLB) side, the Oakland Athletics, in the scouting

and analysing of players in the 2002 MLB season, which saw a revolution in how professional

baseball is played, coached and watched. While the fundamental rules and objectives of baseball

have remained relatively consistent since the MLB’s inception in 1869, the game that is played

today is vastly different to that of previous generations, partially due to the impact of sports

analytics.

The introduction of sabermetrics in the early 2000s has since had a catalytic influence on

the use of data-driven decision making in other sports. Initially, the primary drivers of sports

analytics outside of baseball were sporting codes that had a major league with a home in the

United States, such as basketball’s National Basketball Association (NBA), ice hockey’s National

Hockey League (NHL) and American football’s National Football League (NFL).

For example, the way in which basketball teams operate their offences in the modern NBA

has changed dramatically ever since data analysts put the concept of shot efficiency (expected

points per shot) under the microscope. Between the 1980s and early 2000s, teams shot very few

three-point shots, instead favouring mid-range, two-point shots from the baseline. While the

underlying three-point shooting abilities of players do not appear to have improved dramatically

in the modern era of basketball — the league average three-point field goal percentage has

consistently hovered between 34% and 36% in the last 20 years — only in the last decade

have teams started to exploit the mathematics behind shooting and shot selection. With the

application of sports analytics to basketball, teams have recognised that in many situations, mid-

range two-point shots, tend to have a similar probability of success as longer-ranged three-point

shot attempts, while being worth one fewer point. Therefore, to maximise scoring efficiency,

modern NBA teams generally aim to take a two-point shot, under or very close to the hoop, or to

take a three-point shot, which has lead to the current three-point revolution in basketball (Young,
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Figure 1.1. Most common shot locations in the NBA between the 1997/1998 and 2019/2020
seasons (Soares, 2020).
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2019). In the 2010/2011 season, there was an average of 18.0 three-point attempts per game.

This number has increased in every subsequent season, to the point there was an average of 34.1

three-point shots taken per game in the most recent 2019/2020 season. No team personifies this

more than the Houston Rockets, who in the 2019/2020 season, shot a league-leading average

of 45.3 three-point shots per game. This gradual shift in scoring mentality over the years is

illustrated in Figure 1.1.

1.2.2 Popularity

Sports analytics in the US have become so popular that the use of advanced metrics has emerged

from behind the closed doors of secret boardroom meetings and coaching sessions, to public

broadcasts and live coverage of matches. There are numerous examples of advanced statistical

measures initially purposed for use by coaches, general managers and players, becoming the

gold standard for comparing players, even by more casual fans of the sport. This is not to say

that teams are not continually developing their own metrics for private use. However, with the

increasing number of data analysts finding employment in the likes of the MLB and NBA, it

is probable that many franchises are at least somewhat aware of the various analytical tools

being developed and utilised by their opponents. Eventually, metrics that were once considered

advanced statistics become commonplace among all teams in a league, eliminating the need for

secrecy in how they were derived. Such metrics then trickle down to broadcasters and the general

public, where they are adopted and become another means of comparing player performance.

Part of the success and growth in the field of sports analytics can be attributed to the

respective sporting administrative bodies, who have provided public access to large quantities

of data, allowing for collaboration between data analysts and fostering an environment that

promotes the growth of statistical analysis in sport. In terms of public engagement with statistics,

credit must also be given to the creators of many of these popular advanced statistical metrics

for maintaining an easy to understand, intuitive interpretation, which can be understood by fans

both with and without formal statistical training.

The factors behind what defines a reliable, advanced sports metric were considered in Franks

et al. (2016), who identified three key criteria: (1) stability, whether the metric measures the same

thing in different contexts; (2) discrimination, whether the metric is able to differentiate between

individual performers; and (3) independence, whether the metric provides new information.

These criteria are closely related to the concept of construct validity in psychology, introduced

by Cronbach & Meehl (1955) to define how well a certain test measures what it claims to be

measuring. Sporting metrics that have been successful in their transition from advanced statistic

to publicly available measure, all tend to satisfy the three criteria identified by Franks et al.

(2016). Some metrics have become so popular they are even recognised as an official statistic by
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the sport’s administrative body, which in turn, has resulted in fans consuming more analytical

content than ever.

For example, in baseball, win shares aims to assess a player’s value in terms of how many

wins the player contributed to over the course of a season (James & Henzler, 2002). In a similar

vein, wins above replacement player, and value over replacement player, aim to estimate how

much a player contributes to their team in comparison to a replacement level player, whom a

team could acquire at minimal cost.

In basketball, metrics such as effective field goal percentage and true shooting percentage

allow for the fair comparison of shooting ability by adjusting for the types of shot taken by

individual players. Individual plus-minus (+/-) aims to reflect a player’s individual contribution

to a team performance, by measuring the points difference between teams, while the player is on

the court. Similarly, offensive and defensive ratings measure the expected points scored and

conceded by a player’s team per 100 possessions respectively, while that player is participating in

a game. The difference between a player’s offensive and defensive ratings defines their net rating,

which provides an overall assessment of how much better or worse a team is when a specific

player is on the court (Oliver, 2004). A positive net rating indicates that a player’s team is

likely to outscore their opponent while the player is on the court; a negative net rating indicates

a player’s team is likely to be outscored. All of these are examples of metrics that were once

considered trade secret advanced statistics, but are now publicly available on numerous websites.

Developments in sport-related analytics are not strictly limited to on-field performance either.

Dubbed fanalytics, teams are now looking ways to increase revenue through improving and

optimising fan experiences when attending live sport. For example, the San Francisco 49ers NFL

franchise have developed an in-stadium application to analyse real-time data, helping ground

staff identify which bathrooms need cleaning and ensure busy concession stalls are well-supplied

with hot dogs and beer (Leuty, 2018).

1.2.3 Barriers to growth

While the sports analytics industry in the US grew rapidly across sporting codes following the

introduction of sabermetrics, team sports more popular in Europe, Africa and Australia, such

as association football (soccer), rugby and field hockey have taken longer to adapt and take

advantage of using analytics. One could speculate this to be a result of the open nature of the

skills required in these sports, compared with their American counterparts.

Skills in physical education and sport have been proposed to exist on a continuum, from

closed to open skills (Poulton, 1957; Knapp, 1963; Whiting, 1969). Closed skills take place

in a stable, predictable environment, have a clear beginning and end and are often self-paced.

Examples of closed skills include a tennis serve, a 100 metre sprint, and a penalty kick in football.
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Open skills occur in more variable environments, where the participant has to consider a number

of external factors in choosing how and when to execute the skill. Examples of open skills include

passing in netball, shooting at goal in football, and tackling in rugby.

In baseball, the actions of pitching and hitting are examples of relatively closed skills; each

execution of the skill takes place in a fairly constant environment. Of course some factors, such

as the crowd, game situation, and level of pressure felt by players will vary, meaning these are

not purely closed skills, but overall the skill is performed under similar conditions during each

repetition. In basketball, the action of shooting can vary in how open or closed the skill is

classified, depending on the type of shot. A free throw is almost a purely closed skill, while

taking a shot that is contested by an opposing defender is slightly more toward the open end of

the continuum. Taking an uncontested shot in open play lies somewhere between these two shot

types — there are some variable factors at play, such as the position the shooter receives the

ball in — but ultimately a player must simply catch and shoot the ball.

In contrast, consider the skills required in playing the likes of football and rugby. The

environment in which a player executes the skill of shooting at goal in football will rarely be the

same between any two shots. Instead, when taking a shot, a player must consider the positions

of the goalkeeper and any defenders in front of and behind them, as well as their particular

orientation and the ideal foot to shoot with. Similarly, when making a tackle, a rugby player

must consider whether the ball carrier has any passing options, the defensive position of their

own team mates, and the type of tackle most appropriate for the situation.

There are numerous advantages to analysing data that are collected in sports consisting of

skills that are mostly closed in nature, a significant one being the ease of comparison between

players. It is far easier to determine who is the best free throw shooter in basketball, than it is

to tell who is the best goal kicker in rugby. In the first example, career free throw percentage is a

direct measure of ability, as each free throw is shot in almost identical circumstances. However,

in the latter example, one cannot simply use career goal kicking percentage as a measure of

ability, as the data do not take into account the degree of difficulty of the kicks a player has

taken in their career. For this reason, analysts in team sports outside the US have taken some

time to grapple with how best to analyse the data available.

1.3 Cricket analytics

Considering the number of similarities between cricket and baseball, it may come as a surprise

that cricket is only now beginning to experience the same statistical revolution baseball underwent

in the early 2000s. In each sport, batting and bowling (pitching in baseball) are both relatively

closed skills in nature. Additionally, the sequence of play in cricket is neatly divided into
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individual balls, much like baseball’s pitches, suggesting cricket is a sport that could stand to

gain a lot from a well-developed analytics scene.

One might attribute the lack of attention to developing more advanced statistical metrics in

cricket to the absence of a major international cricket league — and therefore financial value —

until the inception of the Indian Premier League in 2007. A cynical reader will not be surprised

to hear that after the estimated value of the IPL surpassed the US $5 billion mark in 2017

(Duff & Phelps, 2017), franchises began to invest more into cricket analytics in order to gain a

competitive advantage over their opponents and subsequently, a larger slice of the financial pie.

For comparison, MLB’s most popular franchise, the New York Yankees, were valued at US $1.3

billion in 2007, and in 2020 are estimated to be worth US $5 billion alone (Forbes, 2008, 2020).

Due to the sensitive nature of the information, it is difficult to know to what extent professional

domestic and international cricket teams are using data analysis in their day-to-day routines.

However, while the modern scene of cricket analytics is still in its relative infancy, due to the

abundance of data available, cricket has been the subject of a number of academic studies, which

can generally be grouped into one of several categories.

1.3.1 Achieving a fair result in interrupted matches

Many professional sports must contend with the natural elements and at times will require

cancellation and rescheduling. As an outdoor sport where a single day’s play can span over eight

hours of the day, it is inevitable that many games of cricket will be interrupted with seasonal

rains and poor weather. However, due to cricket’s extensive time commitments, cancellation is

undesirable and rescheduling is often impossible. This has lead to an area of research particularly

unique to cricket, in developing methods of achieving a fair result in an interrupted match

(Carter & Guthrie, 2004; Duckworth & Lewis, 1998; Duckworth et al., 2019; Ian & Thomas,

2002; Jayadevan, 2002; Perera & Swartz, 2013; Stern, 2016).

Many followers of the game will be familiar with the Duckworth-Lewis-Stern (DLS) method,

which has become the established method of determining the winner of interrupted one-day and

T20 matches. The method was first derived in Duckworth & Lewis (1998), where the underlying

principal is to consider the number of resources available to the team batting at the time of the

interruption (namely wickets and overs remaining), and to adjust their final score accordingly.

For example, if the second innings of a match is interrupted to the point a match cannot be

completed, the DLS method will consider the number of wickets and overs the batting team had

remaining at the point of interruption. A calculation is then done to estimate the number of

runs the batting team would have scored, which determines the final result of the match. In

order to maintain its relevance, the method is frequently updated to adapt to modern scoring

rates and new formats of the game, such as T20 cricket (Stern, 2016).
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1.3.2 Optimising playing strategies

Prior to the boom of T20 cricket in the late-2000s, a number of studies looked at means of

optimising playing strategies in both one-day and Test cricket. These studies generally aim to

challenge the conventional strategies used by teams in their approach to the game.

Several studies have suggested that teams might expect to score more runs by making certain

tweaks to their batting orders (Clarke & Norman, 2003; Norman & Clarke, 2010; Preston &

Thomas, 2000; Scarf et al., 2011; Swartz et al., 2006), while others suggest teams could stand to

gain from established batsmen making minor changes in their approach to scoring runs at the

end of an innings, when batting with weaker batting partners (Clarke & Norman, 1998, 1999).

However, the proposed findings tend to require a very specific set of match conditions to be put

into practice, which limits the ability to apply these methods in a broader scope.

A more robust method of optimising team lineups, as well as batting and bowling orders in

T20 cricket was proposed in Perera et al. (2016), who derived a method of finding the optimal

matchday team via a simulated annealing algorithm. The model attempts to estimate the

lineup that maximises the difference between expected runs scored while batting and expected

runs conceded while bowling. The approach and potential output of this model is closer to

something that could have an application in real-world cricket. One drawback is the expensive

computational nature of the method. The model fitting process requires roughly 24 hours for

sufficient convergence, which would make adapting batting and bowling orders on the fly during

a match very difficult.

1.3.3 Match outcome prediction

As with many sports that have a heavy statistical focus, numerous past studies have attempted

to identify key elements that can impact a team’s chances of winning a match. More recently,

this has become an area of cricket analytics that has also garnered attention from a commercial

perspective.

At present, several commercial products are employed by modern broadcasters to facilitate

and enhance viewer experience, by providing in-game analysis relating to the current state of the

match and updated estimates predicting the likely victor. These products include the winning

and scoring predictor (WASP) tool and the WinViz model. The former is the subsequent output

of an academic study, which investigated the factors that impact batting conditions in one-day

cricket (Brooker & Hogan, 2011), while the latter as been developed in a private capacity by

UK-based cricket analytics company CricViz. Unfortunately, due the commercial sensitivity

surrounding these products, little information is publicly available regarding the specific factors

and variables that are considered in these models and the modelling process used to obtain such
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predictions is unknown.

Thankfully, papers published via the peer-review process lend themselves to a more collabo-

rative environment. Unsurprisingly, home ground advantage is consistently identified as being

one of the most significant predictors of match outcome, across T20, one-day, and Test cricket

(Akhtar & Scarf, 2012; Bailey & Clarke, 2006; Bandulasiri, 2008). Other potentially significant

variables are often related to the strength of individual teams and historical team performances.

However, when predicting the outcome of a hypothetical match, the majority of previously

proposed models tend to quantify the strength of teams based on the team itself, either via past

performances or using metrics such as the official International Cricket Council team ratings,

rather than inferring team strength from the individual players that make up a side. As a result,

few methods are able to easily make adjustments to predictions of match outcome if key players

are injured, or are not selected to play in a certain match.

Therefore, when making predictive statements regarding the most likely outcome of a match,

it would be advantageous to develop a means of accounting for the individual batting and

bowling strengths of the participating players. Such methods are proposed in this thesis, along

with a novel simulation-based model of predicting match outcome in the context of Test cricket.

Of course, this approach requires the ability to obtain accurate estimates of player ability in the

first instance, which itself is no easy feat, as discussed in Section 1.3.4.

1.3.4 Evaluating player performance and ability

This category of sports analytics is relevant in almost every sport and tends to have the largest

impact on the careers of professional athletes. In the long run, advancements in this category

of analytics enable teams to improve their overall performance by selecting players with skill

sets that tend to result in success, while also saving money by identifying value in previously

overlooked players, and to avoid overpaying players whose reputation is not worth their price

tag. Sports such as baseball and basketball have successfully managed to innovate and develop

numerous advanced statistics in this field, allowing organisations to continually evolve their

underlying strategies and policies in terms of team selection and talent identification.

On the other hand, cricket analytics in this area is still relatively uncharted territory, in

both the public and academic spheres. By not providing a publicly available, standardised data

source, the sport’s governing body, the International Cricket Council (ICC), are incentivising

analysts to keep their work and data sources to themselves and lend their expertise in a private

capacity to organisations that may benefit from (and pay for) their advice. Consequently, due to

the lack of a collaborative environment, there are few advanced metrics that have been accepted

as alternatives to batting and bowling averages among the wider cricketing community.
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Alternative proposals to the batting and bowling average

At the time of their introduction, batting and bowling averages fulfilled the three criteria of a

successful sporting metric identified by Franks et al. (2016); they consistently measure batting

and bowling ability in all contexts; allow for differentiation in ability between players; and at

the time, provided new information. As a result, they were willingly adopted by the cricketing

community, as they provide a general overview of a player’s abilities, whilst being easy to

understand by all viewers of the game. This last point should not be overlooked; many proposed

alternatives to batting and bowling averages have ultimately failed to gain any traction in terms

of uptake and acceptance, due to their lack of an intuitive cricketing interpretation. With this in

mind, when considering the value of newly proposed metrics in cricket, one could justify adding

a fourth criteria of interpretability to the three previously identified by Franks et al. (2016).

A series of papers published by Tony Lewis, of Duckworth-Lewis-Stern fame, proposed a

method of evaluating a player’s net contribution to a one-day match that utilised the established

Duckworth-Lewis methodology at the time (A. Lewis, 2005, 2008). As batting and bowling

averages provide no means of objective comparison, the method considers the number of resources

consumed (balls faced and wickets lost) and resources contributed (runs scored) to quantify the

overall contribution made in a match by individual players. A strong batting contribution is

defined by a high ratio of resources contributed to resources consumed. The inverse is considered

while evaluating bowling; the fewer resources the opposition batsman contributes to their team

per ball bowled, the better a player’s bowling contribution. Additionally, the rate at which runs

are scored is considered in the context of the match. As scoring tends to be slower in early

stages of a team’s innings, batsmen are rewarded for scoring quickly at the beginning of an

innings. However, later in a team’s innings, scoring is expected to be higher and consequently,

batsmen who face a large number of balls for few runs in the latter stages of an innings are

penalised. Similar to plus-minus in basketball, a player’s batting and bowling contributions can

be combined to give an indication as to whether the player had a positive or negative overall

impact on the match. While this method allows for a comparison of performance between

players, the units of average run contribution per unit of resource consumed lack a clear and

concise interpretation and will mean little to even the most seasoned cricket viewer. This lack of

interpretation is likely a major contributing factor as to why player contribution is not a metric

that has been adopted by the wider cricketing audience.

More recently, ESPNcricinfo (an organisation widely considered the primary news source

for all things cricket) introduced a number of new, advanced statistics, dubbed Smart Stats, to

better measure how individual players were performing in the 2018 and 2019 editions of the IPL

(ESPNcricinfo, 2018, 2019). The underlying reasons for introducing Smart Stats were sound;

it is generally accepted that traditional metrics of player ability, such as batting and bowling
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averages, are lacklustre when it comes to T20 cricket, as these measures fail to account for the

match context of an individual performance. Scoring 30 runs off 15 balls is rarely going to have

a game-changing impact in a Test match, however in many cases this could be a match-defining

innings in T20 cricket. Therefore, rather than using the usual metrics of runs scored, batting

average and strike rate to measure player batting performance, smart runs and smart strike rate

measures were introduced. Similarly, smart wickets and smart economy rate were introduced to

better quantify individual bowling performances.

In principle, Smart Stats are great on paper; they aim to account for a number of contextual

variables not considered by traditional metrics, such as the strength of the batsman and bowler,

the general scoring rate in a match and comparing individual batting and bowling performances

by players at similar stages of a match. However, similar to the proposal in A. Lewis (2005,

2008), a major drawback of Smart Stats is their lack of interpretability. There is no clear cut

answer as to what a smart run represents, what a smart strike rate of 200 actually means, or

what the value of one smart wicket is. Furthermore, there is no publicly available methodology

of how to compute Smart Stats, which limits any form of collaboration or engagement from

other experts in the field of cricket analytics. As a result, the usage of Smart Stats are limited

to ranking and comparing player performances, but have no real meaning when it comes to

quantifying differences in ability between players in more real terms.

Outside of batting and bowling averages, the method that has garnered the most public

attention when it comes to ranking the best players in the world, is the official ICC ratings. This

system utilises a broader range of information to rate and rank player performances, including

opposition strength and places emphasis on more recent performances, often referred to as form

in cricket and other sports. As such, the ICC rankings are widely considered a better means of

ordering the current abilities of players, compared with simply ranking players by their career

batting and bowling averages. However, a look at the ICC ratings for the current1 top 10 Test

batsmen and bowlers in Tables 1.3 and 1.4, highlights the shortcomings of this approach and

raises several valid questions.

What does a batting rating of 911 for Steve Smith tell us about his underlying batting ability?

What does it mean that Pat Cummins has 61 more bowling rating points than Neil Wagner?

Like Smart Stats, the ICC ratings are useful for ranking players, but lacks an intuitive cricketing

interpretation and fails to inform about the differences between players’ underlying abilities.

Similarly, the closed source nature of the ICC rating formula means it is unknown as to how

each factor impacts a player’s rating, making it difficult to compare with other methods. Finally,

it is unclear whether the ICC ratings attempt to provide inferential or predictive accuracy, or

instead try to formalise expert judgement about who is in and out of form. These two goals may

1as of 1st December 2020



Chapter 1. Introduction 15

Table 1.3. ICC Test batting ratings as of
1st December 2020.

ICC

Rank Player rating

1. Steve Smith (AUS) 911

2. Virat Kohli (IND) 886

3. Marnus Labuschagne (AUS) 827

4. Kane Williamson (NZ) 812

5. Babar Azam (PAK) 797

6. David Warner (AUS) 793

7. Cheteshwar Pujara (IND) 766

8. Ben Stokes (ENG) 760

9. Joe Root (ENG) 738

10. Anjinkya Rahane (IND) 726

Table 1.4. ICC Test bowling ratings as of
1st December 2020.

ICC

Rank Player rating

1. Pat Cummins (AUS) 904

2. Stuart Broad (ENG) 845

3. Neil Wagner (NZ) 843

4. Tim Southee (NZ) 812

5. Jason Holder (WI) 810

6. Kagiso Rabada (SA) 802

7. Mitchell Starc (AUS) 797

8. James Anderson (AUS) 781

9. Jasprit Bumrah (IND) 779

10. Trent Boult (NZ) 770

not be entirely compatible.

Limitations of the batting and bowling average

To date, batting and bowling averages have yet to be supplanted as the primary method of

gauging the overall abilities of an individual player. However, as single point estimates, these

simple averages fail to inform about variations in ability on two scales.

Firstly, averages fail to measure short-term changes in ability that occur during or within

a single match. Compared to many sports, cricket is distinct in the sense that the physical

differences between matches, such as the local weather and pitch conditions, have a significant

impact on how a match will be played out. Therefore, short-term variation in ability can be

attributed to the need to adjust to these external factors, which are rarely the same between any

two innings. Additionally, certain innings will require a unique mental approach in terms of how

aggressive or defensive to play, depending on the context of the match. Adapting to the specific

match conditions can impact player performance — particularly while batting — where the

process of adjustment is commonly referred to as getting your eye in. Subsequently, batsmen are

frequently dismissed early in their innings, on a low score, before they have gotten their eye in.

Secondly, averages provide no information in regards to how ability varies over the long-term,

between matches. A playing career can last as long as 20 years; it would be näıve to think that

an individual’s underlying abilities remain constant over such a long period of time. Instead,

it is likely that many players’ career trajectories tend to follow an anecdotal description of a

typical sporting career. Young players are generally assumed to begin their careers with some

raw talent and ability, which improves over time as a result of coaching, gaining experience in
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a variety of match conditions, as well as general improvement or deterioration in the likes of

technique, eyesight and agility. Eventually players reach the pinnacle of their career, after which

ability tends to decline.
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Figure 1.2. Career batting data for Kane Williamson in Test matches.

To illustrate how a typical career batting record can be visualised, a graphical representation

of Kane Williamson’s Test match batting career is presented in Figure 1.2. A feature of cricket

that makes it difficult to ascertain the true underlying ability of a player, is the significant amount

of variation observed between individual batting and bowling performances. Or, speaking in

a more statistical manner, it can be difficult to distinguish the signal from the noise. While

batting, due to the notion of getting your eye in, even the best batsmen in the world are more

likely to fail than succeed in any given innings. As a result, many players only score higher

than their career batting average in roughly 30–40% of all completed innings. Most professional

cricketers are aware of this, as suggested by Rahul Dravid, India’s second highest run scorer of

all time.
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“In cricket you fail a lot more than you succeed. In batting, in general, you fail a lot more.

If you consider a fifty as a success point, you don’t cross fifty in the majority of your innings, so

you do learn to fail a lot in cricket, and a guy who has an average of 50 in international cricket

has failed a lot more times than he has succeeded.”

– Rahul Dravid (ESPNcricinfo, 2020)

In the case of Williamson, fewer than 50% of his completed Test innings to date have resulted

in a score of 30 or higher, a score Williamson himself would no doubt consider underwhelming

in many circumstances. While his overall career batting average of 50.99 provides a glowing

reference of his historical batting ability, it does not necessarily indicate how good he is at

present, or, how good he is likely to be in the future. Nor does it inform whether his more recent

scores are any indication of his current ability.

The methods discussed in this thesis aim to provide insight regarding the presence of temporal

variation in individual player batting and bowling abilities, on both short and long-term scales.

As there has been a shift in terms of funding and viewership to shorter form Twenty20 cricket

in the last decade, few modern metrics have been, or can be, applied to longer form domestic

first-class or international Test cricket. Given the recent attention given to shorter form cricket

and the number of situational and contextual complications it brings (Davis et al., 2015), the

primary application of these methods is in first-class and Test cricket, where batting and bowling

performances depend less on the context of a match and more on the underlying abilities of the

players competing.

1.4 Data sources

The data analysed in this thesis consist of two distinct formats.

1. Summary data

• Career records of batting and bowling performances, summarised on a per-innings

basis, for individual players.

2. Ball-by-ball data

• Data pertaining to the outcome of each individual ball bowled in a match.

The data come from three distinct sources, each of which provides the data in a slightly

different format. Data from each source are cleaned, formatted and stored in a standardised

structure using the R computer language (Ihaka & Gentleman, 1996; R Core Team, 2020). This
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maintains a consistent means of accessing, analysing, and visualising the data from each source,

using the same R code and functions.

1.4.1 ESPNcricinfo

A primary data source for international cricket data is Statsguru, the statistics database hosted

on the ESPNcricinfo website2, which provides summary data for every international match

played in the modern era. Test career batting records for every player to have played in a Test

match since the year 2000 were scraped from Statsguru using R and stored in individual CSV

files. These player records are continually updated as matches are played out in real-time.

Table 1.5. Excerpt of Test match summary batting data scraped from Statsguru for Kane
Williamson.

Innings index Runs Innings Venue BF Pos Dismissal Opposition Ground Start date

132 4 1 home 20 3 caught England Hamilton 29 Nov 2019

133 104* 3 home 234 3 not out England Hamilton 29 Nov 2019

134 34 2 away 70 3 caught Australia Perth 12 Dec 2019

135 14 4 away 8 3 caught Australia Perth 12 Dec 2019

136 9 2 away 14 3 caught Australia Melbourne 26 Dec 2019

137 0 4 away 9 3 lbw Australia Melbourne 26 Dec 2019

138 89 2 home 153 3 caught India Wellington 21 Feb 2020

139 3 2 home 8 3 caught India Christchurch 29 Feb 2020

140 5 4 home 8 3 caught India Christchurch 29 Feb 2020

A range of variables are available for each batting performance, including the usual information

recorded on match scorecards, such as runs scored, balls faced, and whether the batsman remained

on a not out score. Innings-specific variables are also recorded, such as which innings of the

match the performance took place in; whether the player was batting at a home, neutral or away

venue; and the player’s position in their team’s batting order. Table 1.5 provides an example of

how the summary batting data are stored.

1.4.2 New Zealand Cricket

A second data source has been provided by New Zealand Cricket (NZC), the country’s national

cricket board. The data are made available through NV Play, a private company based in

New Zealand, who offer a global cricket technology platform for professional and recreational

cricketers. NV Play manage and store the data in a SQL database on behalf of NZC, which can

then be accessed by authenticated users.

2https://www.espncricinfo.com/
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Given NZC’s close connections with the wider cricketing community, the data provided are

incredibly rich and include ball-by-ball information for all professional domestic and international

matches played in New Zealand, and a number of international matches played overseas. Table

1.6 provides a non-exhaustive overview of the range of variables present in the data for many

balls bowled.

Table 1.6. Examples of variables available for each ball in the ball-by-ball data provided by NZC.

General match information

• Home team • Away team

Innings-specific information

• Innings # • Batting team • Bowling team

Ball-specific information

• Date of delivery • Time of delivery

• Over # • Ball #

• Bowler • Batsman

• Wicket type • Batsman dismissed

• Extras scored • Types of extra scored

• Runs scored • Shot type

• Batsman footwork • Batsman connection

• Batsman score • Team score

The depth of the data provides almost limitless avenues of exploration for any user with

an interest in cricket. The content of this thesis primarily focuses on the analysis of player

performances and match outcome prediction, and does not even scratch the surface of what

could be done with certain elements of the data. For example, ball tracking data are provided

for a large number of international matches and provides significant insights as to where certain

bowlers bowl and where certain batsmen tend to hit the ball. Based on over 300,000 deliveries

for both left and right-handed batsmen, Figures 1.3 and 1.4 clearly illustrate bowlers’ tendencies

to bowl in the corridor of uncertainty, on, or just outside the top of a batsman’s off-stump, with

the occasional short-pitched bouncer thrown in.

The results presented in this thesis focus tend to focus on international Test cricket. While

the NZC data source is incredibly rich in terms of the amount of information provided for every

ball bowled, in the context of Test cricket the data are incomplete, as data for a number of Test

matches played outside of New Zealand in the last decade or so are missing. However, while

not specifically discussed, the methods and statistical applications detailed in this thesis were

first applied to data pertaining to New Zealand’s various domestic cricket leagues, such as the
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Plunket Shield, the country’s premier first-class cricket competition. As such, it is important to

acknowledge the critical role this data source played in the development and implementation of

the models discussed in later chapters.

Figure 1.3. A bird’s eye view heat map show-
ing the locations of where balls tend to pitch on
the wicket. Blue indicates areas of low density
and red indicates areas of high density.

Figure 1.4. Heat map showing the locations
of where balls tend to pass the stumps. Blue
indicates areas of low density and red indicates
areas of high density.

1.4.3 Cricsheet

This data source consists of ball-by-ball data for Test matches, downloaded from the Cricsheet

website3. The data set consists of ball-by-ball data for 532 Tests played between 1st January

2008 and 1st December 2020. This covers all Test matches played over the period, with the

exception of four identified missing matches that occurred in 2008. Given very few international

players from 2008 still feature in international fixtures in 2020 and beyond, the Cricsheet data

includes ball-by-ball information for every delivery faced, or bowled by, the majority of current

Test cricketers.

Each ball-by-ball match file is stored in YAML format, which is then cleaned and formatted

using R. The level of information recorded for each ball is not as in-depth as the NZC data

provided in Table 1.6; namely, the data omits personal player characteristic information, such as

3https://cricsheet.org/
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batting and bowling handedness and individual bowling type. However, all essential information

is available, such as the individual batsman/bowler matchup for each ball, the outcome of the

ball and all innings and venue-specific data.

1.5 Bayesian inference

The methods and models proposed in this thesis have been developed and implemented under

a Bayesian framework. Working within a Bayesian context allows for the expression of any

uncertainty in terms of probability (O’Hagan & Forster, 2004), while providing the tools to

continually update estimates and opinions that are formed about individual players, as more

matches are played and more data are collected.

1.5.1 Bayes’ theorem

When applying the principles of Bayesian inference, the goal is to derive meaningful inference in

regards to a set of model parameters, θ, through the observation of data, D. Prior to observing

data, certain choices must be made in regards to the questions one is trying to answer and the

assumptions one is willing to make. An initial part of this process includes specifying prior

distributions for the parameters of interest, θ, representing one’s initial or current state of beliefs

regarding a certain parameter. Given a proposed model and corresponding set of assumptions,

M , a prior distribution can be expressed as P (θ|M). An advantage of working within the

Bayesian paradigm when dealing with statistical problems that have real-world applications is

the ability to formally impart expert judgement on the topic, via the assignment of subjective

prior distributions. In the case of cricket, an experienced viewer will have an intuitive idea about

how the game works and realistic expectations in regards to the feasible range of underlying

abilities of professional cricketers.

Upon observing data, D, it is possible to update one’s beliefs regarding θ, by expressing

them as a posterior distribution, P (θ|D,M). In order to obtain a posterior distribution, one

must first consider the likelihood of observing the specific data, given the specified prior beliefs,

P (D|θ,M). If the observed data are different to what was expected under the prior assumptions

of the model, P (θ|M), then the posterior distribution will be notably different to the prior

distribution, reflecting the plausibility of observing similar data in the future. It is possible to

obtain a posterior distribution, P (θ|D,M), from a prior distribution, P (θ|M), and observed

data, D, using Bayes’ theorem, which is derived in Equation 1.4 below.

Let A and B define two events. Using the product rule, the probability of A and B can be
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expressed as follows

P (A ∩B) = P (A) P (B|A),

P (B ∩ A) = P (B) P (A|B).
(1.3)

As P (B ∩ A) = P (A ∩B), it follows that

P (B) P (A|B) = P (A) P (B|A),

∴ P (A|B) =
P (A) P (B|A)

P (B)
. (1.4)

Therefore, using the result of Bayes’ theorem from Equation 1.4, the posterior distribution

for θ can be expressed as

P (θ|D,M) =
P (θ|M) P (D|θ,M)

P (D|M)
. (1.5)

The denominator, P (D|M), in Equation 1.5 is often referred to as the evidence or marginal

likelihood. This quantity represents the likelihood of observing the data, given the prior model

assumptions, and is computed by integrating over the parameter space, θ, weighted by the prior

plausibility about each possible value for the parameter, P (θ|M). More simply, one can express

Bayes’ theorem as follows

Posterior =
Prior× Likelihood

Marginal likelihood
. (1.6)

As the marginal likelihood, P (D|M), is often difficult to obtain, the posterior distribution is

often simplified and expressed as

Posterior ∝ Prior× Likelihood, (1.7)

or, more formally

P (θ|D,M) ∝ P (θ|M) P (D|θ,M). (1.8)

1.5.2 Monte Carlo sampling methods

When dealing with multiple parameters in the parameter space, θ, the joint posterior distribution,

P (θ|D,M), can be of high dimensionality, which can be difficult to express numerically. A

common solution is to summarise the model parameters by sampling from the joint posterior

distribution, using numerical sampling techniques such as Markov chain Monte Carlo (MCMC).
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Popular MCMC methods include the Metropolis-Hastings algorithm (Hastings, 1970; Metropo-

lis et al., 1953), Gibbs sampling (Geman & Geman, 1984), slice sampling (Neal, 2003) and

Hamiltonian MCMC (Neal, 2011).

Nested sampling

Nested sampling is a sampling scheme developed by physicist John Skilling, with the primary

purpose of computing the marginal likelihood or evidence, P (D|M), hereafter denoted as Z

(Skilling, 2006). Given a set of prior assumptions about some model parameters, P (θ), the

model likelihood, P (D|θ,M), and the posterior distribution, P (θ|D), an expression for Z can

be obtained by rearranging Bayes’ theorem in Equation 1.4.

P (θ|D) =
P (θ) P (D|θ,M)

Z

P (θ|D)× Z = P (θ)× L(θ)

Marginal likelihood = Z =

∫
P (θ)× P (D|θ,M) dθ (1.9)

The ability to compute the marginal likelihood is a significant advantage of nested sampling,

which, depending on the problem at hand, can be achieved at minimal extra cost. The

computation of the marginal likelihood does not hinder the method’s ability of estimating the

posterior distributions for the model parameters, θ, which can be obtained by taking weighted

samples of θ from the output of a nested sampling run. Rather, the marginal likelihood is the

primary output of nested sampling and “samples from the posterior distribution are an optional

by-product” (Skilling, 2006).

A major benefit of possessing the marginal likelihood values of a Bayesian model is the ease

of which model comparison becomes. Within a Bayesian framework, model comparison is often

performed by computing a Bayes factor, which is the ratio of marginal likelihoods of two proposed

models (Kass & Raftery, 1995). Consider two models, M1 and M2, and two corresponding sets

of model parameters, θ1 and θ2. When fitting each model to the same data, D, the posterior

distributions for each set of model parameters can be obtained using Bayes’ theorem.

The quantity computed in Equation 1.10 is the posterior odds ratio, which is simply the

prior odds multiplied by the Bayes factor. Values greater than 1 suggest that M1 is preferred

over M2, while values less than 1 suggest the opposite. Assuming each model is equally likely

under the prior model assumptions, the posterior odds ratio is simply equal to the Bayes factor.

Put simply, whichever model has the higher marginal likelihood is the preferred model, which
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makes for trivial model comparison.

P (M1|D)

P (M2|D)
=
P (M1)

P (M2)
× P (D|M1)

P (D|M2)
(1.10)

Unless stated otherwise, the majority of the model fitting process in this thesis is performed

using classical nested sampling, as proposed by Skilling (2006). The nested sampling algorithm

is implemented in C++ (Stroustrup, 2013) with the relevant model output files saved in a TXT

or CSV file format. These output files are then post-processed in R (Ihaka & Gentleman, 1996;

R Core Team, 2020) for the purpose of visualising the results and obtain meaningful inference.

1.6 Thesis overview

In this thesis, a series of models that employ the use of machine learning algorithms are proposed

for estimating and predicting the past, present, and future batting and bowling abilities of

professional cricket players. The resulting model outputs are used to investigate the plausibility

of various cricket-related concepts, such as whether there is any evidence to suggest that recent

form is really an accurate predictor of future performance. A novel method of combining these

estimates in order to accurately predict the outcome of any given match is then discussed, along

with potential real-world applications of these predictive outputs. A list of references is provided

immediately after Chapter 5, followed by an Appendix containing relevant R code referred to

throughout Chapter 4.

This section provides a brief overview of each chapter, with the exception of Chapter 5.

1.6.1 Estimating batting career trajectories

As a point estimate, the batting average is a metric that is unable to effectively describe

underlying changes in a player’s batting ability. Such fluctuations in ability may exist on

both short and long-term scales, both during and between individual innings. A method for

quantifying potential variation in batting ability observed within a single innings was discussed

in Stevenson & Brewer (2017). However, like the batting average, this method makes the

assumption that a player’s underlying ability remains constant across all innings of a career.

Recent form is often cited as an indicator of current batting ability and is frequently used as a

justification for dropping or selecting specific players from domestic and international teams.

Therefore, if form is truly a predictor of future performance, it should be possible to develop a

model which can identify temporal deviations in ability across the careers of individual players.

In Chapter 2, the model developed in Stevenson & Brewer (2017) is extended to have the
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functionality to detect and measure changes in underlying batting ability, both within a single

innings, and between multiple innings, across entire playing careers. The proposed model

estimates a player’s batting career trajectory, with the intention of (1) estimating how a player’s

underlying batting ability has varied over the course of their career to date; (2) predicting a

player’s current and future batting ability; and (3) quantifying any short or long-term temporal

effects that may exist at the individual level, due to a player’s past performances and recent

form. The impact of several external, innings-specific factors is also discussed. The model output

is provided in units of a batting average, which allows for an easy to understand cricketing

interpretation and can be directly compared with the batting average. It is shown that the

proposed model and corresponding predictions of ability generally provide more accurate and

intuitive predictions of future player performance than other metrics, such as the batting average.

1.6.2 Estimating bowling career trajectories

Like the batting average, the bowling average fails to inform about variations in ability that

occur over time. As such, it is of practical use to develop a class of model that can estimate the

bowling career trajectory of individual players, to measure and predict how a player’s underlying

bowling ability might vary over the course of their career. However, quantifying the value of

specific bowling performances comes with several additional challenges, not present in a batting

context.

Firstly, while batting performances can be effectively summarised by the number of runs

scored, bowling performances are typically reported using two variables: runs conceded and

wickets taken. This can make it difficult to objectively compare two distinct career performances,

or to compare performances between two players in a particular innings. Secondly, the quality

of batsmen bowled to during an innings can vary significantly between separate bowling efforts,

further compounding the difficulty of comparing performances.

In Chapter 3, a novel method of summarising bowling performances is proposed, removing

the need to quantify bowling efforts using multiple variables. Furthermore, a new metric,

standardised runs, is introduced to adjust for the quality of batsmen that bowlers have conceded

runs against during their career. Under this specification, individual bowling performances can

be compared in a more objective manner, as the quality of opposition has been accounted for.

The adjusted data are then used to develop a model, similar to that detailed in Chapter 2, to

estimate bowling career trajectories, measuring and predicting the past, present, and future

bowling abilities of individual players.
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1.6.3 A simulation-based method of match outcome prediction

As previously identified, few proposed methods of predicting the outcome of a cricket match

consider the individual strengths of the participating players. Instead, estimates of relative team

strength are typically based on historic team performance, or a team rating system, such as the

official ICC team ratings. Therefore, such methods have difficulty adapting in situations when

key players are ruled out with injury, or where team lineups are significantly different to what

has been observed in the past.

In Chapter 4, a simulation-based method of predicting the outcome of Test matches, given

two proposed playing XIs, is discussed. The proposed methodology utilises the estimates of

player batting and bowling ability derived in Chapters 2 and 3, which provides an additional

level of detail to the estimated probabilities, not considered by other methods. An overview of

the simulation process is provided, detailing how the various intricacies and complexities of Test

cricket are accounted for.

Several practical applications of the simulation tool are discussed. These include a potential

public interest, in terms of possible uses in the broadcasting of Test cricket, and a private interest,

whereby the results can be applied by coaches and selectors of professional teams to gain a

competitive advantage over their opposition.



Chapter 2

Estimating batting career trajectories

2.1 Introduction

As discussed in Section 1.3.4, when it comes to evaluating the batting abilities of individual

players there are a number of limitations with the batting average and many of its proposed

alternatives, such as the ICC rating system. Such methods struggle to maintain an intuitive

cricketing interpretation while also lacking the ability to inform about variations in ability

that occur on two scales (1) short-term changes that occur during or within a single innings,

due to factors relating to the concept of getting your eye in; and (2) long-term changes that

occur between innings, over the course of entire playing careers, which are a result of players

participating in specialised coaching programmes, gaining experience in various match conditions,

as well as general improvements or deteriorations in the likes of technique, eyesight and agility.

Furthermore, as identified in Section 1.3.4, many modern methods have tended to focus on

Twenty20 cricket, given the format’s global rise in popularity over the last decade. The methods

presented in this chapter focus on longer form first-class and Test cricket, where batting decisions

are less reliant on match context and are therefore more indicative of a player’s true underlying

ability.

2.1.1 Estimating short-term variation in ability

An implicit assumption of batting and bowling averages is that a player performs with some

constant ability during a given innings. While this assumption may hold some validity when

bowling, there is plenty of anecdotal evidence to suggest that, within each innings, batting ability

develops over time as a player scores runs and gets their eye in. One of the earliest documented

statistical studies of cricket provided empirical evidence to suggest that a batsman’s set of career

scores could be modelled by a geometric progression, supporting the idea of an approximately

27
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constant batting ability during a single innings (Elderton & Wood, 1945). However, multiple

studies have since shown that the geometric assumptions do not hold for numerous players, due

to the inflated number of low scores, particularly scores of zero (ducks), that are present in many

players’ career records (A. C. Kimber & Hansford, 1993; Brewer, 2008; Bracewell & Ruggiero,

2009; Stevenson & Brewer, 2017).

The findings of these later studies provide a theoretical justification to the concept of getting

your eye in and suggest that many players exhibit some form of short-term variation in batting

ability, which is not expressed by the batting average. Rather than directly model batting

scores, as was the approach in Elderton & Wood (1945), A. C. Kimber & Hansford (1993)

introduced the concept of a hazard function, H(x), while batting, representing the probability

that a batsman currently on score x gets out, rather than progressing to a higher score. The

results found that hazard functions generally have larger values for low values of x, indicating

that batsmen are more likely to get out on low scores, early in their innings, supporting the

idea of getting your eye in. However, as the underlying method used to estimate the hazard

function was nonparametric, the estimates for H(x) become unreliable for larger scores, due to

the sparsity of the data at these scores for many players. Cai et al. (2002) applied a parametric

smoother to the empirical dismissal probabilities implied by the hazard function, which helped

partially address the issues of data sparsity. However, as the underlying hazard function was still

modelled using a nonparametric estimator, the issues of data sparsity remained and continued

to distort the hazard function at higher scores.

To account for the inflated number of scores of zero present in many career records, Bracewell

& Ruggiero (2009) proposed a Ducks ’n’ runs distribution for modelling batting scores. The

distribution aims to estimate a batsman’s likely contribution towards their team’s total and

consists of a mixture of a beta and geometric distribution. The beta component estimates

the probability of a player failing to contribute any runs (getting a duck), while the geometric

component represents the distribution of non-zero scores. While this method addresses the

inflated number of ducks present in a player’s career record, the model assumes that once

avoiding a score of zero, a batsman plays out the remainder of their innings with a constant

ability. This implicitly assumes that the getting your eye in process is complete upon scoring

just a single run, which is probably not a reasonable assumption in the context of most innings.

To better quantify the effect of getting your eye in for individual batsmen, Brewer (2008)

and Stevenson & Brewer (2017) introduced the concept of the effective batting average, µ(x),

representing a batsman’s underlying batting ability on score x, in units of a batting average.

Given the prevalence of the batting average in cricket, it is far more intuitive for coaches, players

and viewers of the game to think of batting ability in terms of batting averages, rather than

dismissal probabilities implied by the hazard function, H(x). The hazard function and effective
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average function can be expressed in terms of one another, as shown in Equations 2.1 and 2.2:

H(x) =
1

µ(x) + 1
, (2.1)

µ(x) =
1

H(x)
− 1. (2.2)

The effective average has a relatively simple interpretation. For example, a value of µ(0) = 20,

indicates that when on a score of zero, a player bats with the average ability of somebody who

has a career batting average of 20. Similarly, a value of µ(50) = 60, suggests that when on a

score of 50, the player bats with the ability of somebody with a career batting average of 60.

In this series of papers, the authors fitted parametric models in a Bayesian context in order

to estimate how the underlying effective average, µ(x), varies over the course of an innings for

individual batsmen (Brewer, 2008; Stevenson & Brewer, 2017). The model consists of three

parameters, {µ1, µ2, L}, which aim to quantify:

1. A player’s initial batting ability when starting a new innings (µ1).

2. A player’s eye-in, equilibrium or peak batting ability, once familiar with the specific match

conditions (µ2).

3. How long it takes a player to transition from their initial batting state to their peak state

(L).

Both µ1 and µ2 are expressed in units of a batting average. The timescale parameter,

L, measures the speed of transition between µ1 and µ2 and is formally the e-folding time, a

measurement usually seen in theoretical physics. This quantity represents the number of runs

scored for approximately 63% (formally 1− 1
e
) of the transition between µ1 and µ2 to take place

and can be understood by analogy with a half-life.

Constructing the effective average function, µ(x), from the posterior distributions of the

model parameters, allows for the batting ability of any player to be quantified, while batting on

any score x. This helps answer questions about specific players, such as (1) how well a player

performs when beginning a new innings, (2) how well a player performs once they have their

eye in, and (3) how long it takes a player to get their eye in. For the vast majority of past and

present Test match players analysed, Stevenson & Brewer (2017) found overwhelming evidence

to suggest that players are far more likely to get out early in their innings, while on a low score,

than later on in their innings, further supporting the notion of getting your eye in.

To provide a practical example, the posterior predictive effective average function, µ(x), for

Kane Williamson is presented in Figure 2.1. As per the authors’ recommendation, the posterior
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Figure 2.1. Estimated posterior predictive effective average function, µ(x), for Kane Williamson,
including the 68% and 95% credible intervals. Each faint red line represents a posterior sample
that is used in the calculation of the posterior predictive estimate. Posterior parameter summaries
and 68% credible intervals are also provided, as is Williamson’s career average, which infers a
constant ability during an innings.

median is used to summarise the parameter distributions, as the posterior distributions are

not necessarily symmetric and can have heavy tails. Clearly the estimated values for µ(x) are

smaller for low scores, illustrating the effect of getting your eye in for Kane Williamson. The

estimated posterior value for L = 6.5 suggests that after scoring 7 or so runs, Williamson has

transitioned almost two thirds of the way between his initial and peak batting states. A quick

glance at Figure 2.1, suggests Williamson is batting near his peak ability after scoring roughly

30 to 40 runs. The difference between the expected distribution of scores using the effective

average, µ(x), versus a geometric distribution is then presented in Figure 2.2.

Teams may benefit from this type of analysis, as they can identify opposition players who

are particularly vulnerable at the beginning of an innings and may be able to capitalise on such

a weakness by setting more attacking fields than usual, early in the specific player’s innings. It
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Figure 2.2. Histogram of Kane Williamson’s Test career scores (grey). The implied distribution
of scores based on a constant hazard model that assumes a geometric distribution (blue) and
effective average model (red) are provided for comparison. The constant hazard model under
predicts the probability of being dismissed on a low score as it ignores the effect of getting your
eye in, while the effective average model does a better job of quantifying this effect.

is worth noting that the model does not consider potentially important factors such as balls

faced, boundaries scored, or the quality of bowlers faced. However, it has been shown to provide

far more accurate estimates of how player batting ability can vary during the course of a single

innings than the batting average and allows for some interesting player comparisons.

For example, in Figure 2.3 and Table 2.1, the posterior predictive effective average functions,

µ(x), and relevant parameter summaries are presented for a group of batsman — colloquially

referred to as the big four (J. Kimber, 2017) — who have dominated world cricket in recent

years. The posterior parameter point estimates obtained from the method detailed in Stevenson

& Brewer (2017) suggest that despite having the lowest career average of the big four, English

captain Joe Root appears to be a stronger batsmen at the start of an innings and gets his eye in

faster than Kane Williamson. However, once the players have got their eye in and reached their
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peak ability, Williamson is likely the superior batsman. Similarly, Indian captain Virat Kohli

appears to begin an innings with a lesser ability than Root, but gets his eye in very quickly and

has a peak ability somewhere between that of Root and Williamson. On the other hand, former

Australian captain Steve Smith appears to begin an innings already batting at a high ability, but

takes slightly longer to reach his peak ability, compared with the other players in the big four.
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Figure 2.3. Estimated posterior predictive effective average function, µ(x), for the big four.

These findings are consistent with Root’s oft-touted ability of making a solid start to an

innings, but failure to regularly convert scores of 50+ into scores of 100+. Root has made 17

scores of 100+ but has been dismissed 46 times between scores of 50 and 100. Ignoring not out

scores between 50 and 100, Root has converted just 27.0% of his 50+ scores into centuries, which

is considerably lower than the conversion rates of Smith (52.0%), Kohli (57.4%), and Williamson

(41.2%). The results may also suggest that opposition teams could benefit by setting more

attacking fields early on to Williamson and Kohli, before they have their eye in. Additionally, it

is possible that teams could set aggressive fields for a prolonged period to a player like Steve

Smith, who appears to take longer to get his eye in.

As with any statistical model there is a degree of uncertainty associated with these estimates.
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Table 2.1. Posterior parameter summaries for the within innings effective average function,
µ(x), for the big four, including point estimates and 68% credible intervals.

Player Career average µ1 µ2 L

Steve Smith (AUS) 62.8 36.2 (26.2, 46.4) 63.1 (56.5, 71.6) 6.9 (1.5, 17.2)

Virat Kohli (IND) 53.6 18.1 (12.9, 26.0) 58.3 (52.2, 65.9) 4.3 (1.4, 10.9)

Kane Williamson (NZ) 51.0 17.2 (12.6, 23.5) 59.8 (52.7, 68.0) 6.6 (3.6, 11.5)

Joe Root (ENG) 48.0 22.5 (16.6, 29.9) 52.0 (47.2, 58.0) 5.2 (2.4, 10.1)

However, an advantage of performing the analysis in a Bayesian context is the ease of which one

can make probabilistic statements in regards to the parameters of interest by drawing a number

of posterior samples. For example, comparing the posterior distributions for µ2 suggests there is

an 78.4% chance that Kane Williamson has a superior peak batting ability compared with Joe

Root, a 55.3% chance compared with Virat Kohli, and a 36.6% chance compared with Steve

Smith.

In a related study, Stevenson (2017) applied a set of more flexible models that allow for

score-based deviations in the effective average function at any score, not just at the beginning of

an innings when a batsman is getting their eye in. The aim of this analysis was to determine

whether there is any evidence to suggest that batsmen are more likely to get out on certain scores

— as suggested by the cricketing superstition the nervous 90s — whereby players are thought to

bat with inferior ability due to nerves that arise when nearing the significant milestone score of

100. Although there is plenty of anecdotal evidence to suggest that players do get nervous in

the 90s, Stevenson (2017) found no conclusive evidence to suggest batting ability is affected by

these nerves. Instead, some evidence was found to suggest that players are more likely to get

out immediately after passing significant milestones such as 50 and 100, suggesting that perhaps

the fallible 50s and hazardous 100s would be more justified clichés.

2.1.2 Estimating long-term variation in ability

Section 2.1.1 has established that there is plenty of statistical evidence to suggest that players

do not bat with some constant ability during an innings or match, due to the concept of getting

your eye in. However, it is equally unlikely, if not more unlikely, that players perform with some

constant ability throughout an entire playing career, which can span up to 20 years. Instead,

variations and fluctuations in a player’s underlying abilities are likely to occur between innings

and matches. Viewers of the game, ranging from armchair spectators, to newspaper columnists,

to national selectors, will often cite a player’s recent performances, or form, as a reason for

selecting a new player or dropping an incumbent. As previously noted, due to the nature of the
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sport and the process of getting your eye in, the majority of batsmen are more likely to fail than

succeed in any given innings, resulting in a probability distribution over scores that is relatively

heavy-tailed, and data sets that are noisy. Consequently, it is common to observe players string

together a number of low scores in a row, even if their underlying ability has not changed.

If recent batting form were to have a considerable impact on player performance then it

should be possible to view a player’s career batting record and identify sustained sequences of

both high scores (indicating a player is in form) and low scores (indicating a player is out of

form) that are statistically significant. On the contrary, an analysis of 16 Test match batsmen

by Durbach & Thiart (2007) found little empirical evidence to suggest that past performances

were predictive of future scores, with the majority of players’ scores being well described by

an independent, identically distributed sequence. Instead, the authors concluded that public

perceptions of batting form tend to be overstated, possibly due to a case of recency bias, which is

known to impact sports betting markets (Bailey & Clarke, 2006) and results in more importance

given to recent performances and outcomes. Similarly, A. C. Kimber & Hansford (1993) justified

the use of a batting average to quantify ability as they found no significant evidence to suggest

the presence of autocorrelation in a player’s career record. However, it is worth noting that the

sample size of players analysed in each of these studies is relatively low.

Related concepts have been investigated in other sports, such as the idea of the hot hand in

basketball, which suggests that players are more likely to make subsequent shot attempts after

making several shots in a row. For a long time, the existence of such effects have been treated

with scepticism (Gilovich et al., 1985; Tversky & Gilovich, 1989). However, more recent studies

have suggested that players on a hot streak tend to start taking more difficult shots, which may

mask any hot hand effect due to recent form, even if players are making these tough shots at a

higher rate than usual (Csapo et al., 2015). A more modern and pragmatic viewpoint is that

for many players there is no evidence of a hot hand effect, but this varies from player to player

and such an effect may exist in certain circumstances (Shea, 2014; Wetzels et al., 2016). An

investigation into the hot hand in professional darts yielded similar findings; there is some weak

support for such an effect, but the evidence is generally inconclusive (Ötting et al., 2020).

Returning to a cricketing context, there is further evidence from psychological studies to

indicate that a player’s recent form can impact mood, anxiety and stress levels, which in turn can

affect player performance. A study which canvassed the opinions of professional cricketers found

that the majority of players surveyed believed a small amount of stress and tension is beneficial

for performance (Sahni & Bhogal, 2017). On the other hand, excessive external pressure has

been proposed to impact performance negatively (Totterdell, 1999). Consider the following

quotes from Jeet Raval, who was an incumbent opening batsman for the New Zealand Test side

between 2017 and 2019, before being dropped in early 2020.



Chapter 2. Estimating batting career trajectories 35

“I would have loved to get not just a hundred, but a big hundred because that would have

helped us get into a winning position. That’s what this Black Cap team is about.”

– A confident Jeet Raval after scoring two fifties in his first two Test matches (Moonda, 2017)

“I hope I don’t get out this ball.”

– Raval opens up about his batting mindset while playing England in late-2019 (Kishore, 2020)

Raval appeared full of confidence after a successful start to his Test career and continued

to score consistent runs for New Zealand. However, by his own admission, Raval was simply

in survival mode while batting after a turbulent 2019 where he struggled to score runs. In

hindsight, it is likely that Raval’s negative thought patterns contributed towards his ongoing

difficulties with the bat before being dropped in 2020. This sentiment is echoed below by Indian

great Rahul Dravid.

“If you’re switched on or too intense all the time, it drains you of a lot of mental energy and

when you need that to play, you won’t have any of it because you’d already be so tired mentally.”

– Rahul Dravid on how too much intensity and pressure can be detrimental (ESPNcricinfo, 2020)

Therefore, if recent performances can have an influence on a player’s mental state, it is

plausible that recent form may impact current batting ability. Consequently, the underlying

assumption made by numerous studies that each innings in a player’s career record can be

treated as independent and identically distributed, may be violated to some extent.

To determine whether a batsman is in or out of form in the context of one-day cricket, Koulis

et al. (2014) employed a Bayesian hidden Markov model. Here, the authors define a number of

underlying batting states for individual players while estimating the number of runs to be scored

when in each state. Parameters that measure availability, the probability a player is in form

for the next match; reliability, the probability that a player is in form for the next n matches;

and mean time to failure, the expected number of innings a player will bat in before they are

deemed out of form, are also estimated for each player. While the findings suggest that players

experience periods of being in and out of form, the model is limited by its requirement for an

explicit and discrete judgement of what constitutes an in form and out of form state.

In the paper, the authors specify a batting state that has a posterior expected median number

of runs scored of less than 25, as being out of form, and all other states as being in form. From

the perspective of T20 cricket this is not necessarily an unreasonable specification, however there

are plenty of cases in one-day cricket where a score of 25 or greater, scored at a low strike rate,
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may be considered an unsuccessful innings. Additionally, this approach does not consider the

underlying ability of a batsman. For example, a player who typically averages above 40 might

consider a state with a posterior expected median of 25 runs as an out of form state, whereas a

similar state for a player who averages below 20 would certainly indicate strong recent form.

A more recent study in the context of Test cricket utilised a Poisson random-effects model

for the purpose of estimating the abilities of batsmen over the course of a Test career (Boys &

Philipson, 2019). The primary aims of this study were to find a method of fairly comparing

batsmen across eras and identifying the age at which individual batsmen are believed to have

peaked. The model considers a number of important external factors for each career innings,

including the strength of the opposition, as well as innings and venue-specific effects. Similar to

the concept of the effective average adopted by Stevenson & Brewer (2017), the authors interpret

batting ability in units of an expected batting average for a given innings. The model output

provides a means of approximating the differences in ability between batsmen in a far more

meaningful manner than the ICC’s rating points system, allowing for more insightful player

comparisons and quantifications of batting ability.

The methods presented in this chapter build on the Bayesian parametric model developed

in Stevenson & Brewer (2017), allowing for the estimation of past, present, and future batting

abilities from Test career batting data (Section 2.2). The model considers both short-term

(Section 2.2.2) and long-term (Section 2.2.3) variations in ability that may occur as a result

of the factors outlined earlier in Sections 2.1.1 and 2.1.2. Similar to Boys & Philipson (2019),

the model estimates batting ability in terms of an expected number of runs to be scored in

a given innings, which helps address the limitations of the ICC rating method. The model

output allows for the construction of individual player batting career trajectories, illustrating

how player ability has evolved over time, which are presented alongside the general findings and

practical applications in Section 2.3. In Section 2.4, the model predictions are compared with

other various stationary and non-stationary methods of estimating batting ability, including the

traditional batting average. Of all methods, the present model is shown to provide the most

accurate estimates of future ability. The methodology detailed in this chapter formed the basis

of publications Stevenson & Brewer (2018) and Stevenson & Brewer (2021).

2.2 Model specification

2.2.1 Model likelihood

The derivation of the model likelihood for a single innings, or set of career innings, follows the

method detailed in Stevenson & Brewer (2017, 2018, 2021). If X ∈ {0, 1, 2, 3, ...} represents the
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number of runs scored in a given innings, then the hazard function, H(x) ∈ [0, 1], defines the

probability of a batsman getting out while on score x (Equation 2.3).

H(x) = P (X = x|X ≥ x) (2.3)

Assuming a functional form for H(x), conditional on a set of parameters, θ, the probability

distribution of scores, X, can be expressed in terms of the hazard function, as shown in Equation

2.4.

H(x) =


H(0), if x = 0

H(x)
x−1∏
r=0

[1−H(r)], otherwise
(2.4)

For any given value of x, Equation 2.4 is the conditional probability of a batsman surviving

until score x, then being dismissed. When inferring model parameters, θ, from data, Equation

2.4 provides the likelihood function for a single innings. However, in cricket there are certain

instances where a batsman’s innings may end without being dismissed, referred to as a not

out score. In the case of not out scores the likelihood is computed as P (X ≥ x), rather than

P (X = x). Comparable to right-censored observations in survival analysis, the computation

of P (X ≥ x) for not out scores assumes a batsman would have scored some unobserved score,

conditional on their current score and assumed hazard function. Treating not out scores in this

manner implies that the sequence of out and not out flags in the data, without the associated

score, provides no information about the model parameters, θ.

Therefore, if T is the total number of innings a player has batted in and N is the total

number of not out innings, the probability distribution for a set of conditionally independent

out scores, x = {x1, x2, ..., xT−N}, and not out scores, y = {y1, y2, ..., yN}, can be expressed as

P ({x,y}) =
T−N∏
t=1

(
H(xt)

xt−1∏
r=0

[
1−H(r)

])
×

N∏
t=1

( yt−1∏
r=0

[
1−H(r)

])
. (2.5)

When data {x,y} are fixed and known, Equation 2.5 provides the likelihood for any proposed

form of the hazard function. Therefore, conditional on the set of parameters, θ, governing the

form of the hazard function, H(x;θ), one can derive the log-likelihood, `(θ), from Equation 2.5

as follows

`(θ) =
T−N∑
t=1

log
[
H(xt)

]
+

T−N∑
t=1

xt−1∑
r=0

log
[
1−H(r)

]
+

N∑
t=1

yt−1∑
r=0

log
[
1−H(r)

]
. (2.6)

The equations presented in Section 2.2.1 define the likelihood function for any proposed

theory of how a player’s batting ability varies as a function of their current score. The specific
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parameterisation of H(x) is defined in Section 2.2.2 and is similar to the model used in Stevenson

& Brewer (2017). However, the model is extended to accommodate both short-term and long-

term variation in batting ability by allowing several model parameters to vary over time, as well

as accounting for a number of innings-specific factors that are described in Section 2.2.3.

2.2.2 Within-innings and short-term effects

Estimating how a batsman’s ability changes during an innings, as they score runs and get their

eye in, requires an explicit parameterisation of the hazard function, H(x). As discussed earlier,

this is achieved by introducing the effective average function from Stevenson & Brewer (2017),

which is denoted by µ(x) and represents a player’s underlying batting ability while on a score

of x, in units of a batting average. The hazard function can then be expressed in terms of the

effective average function as per Equation 2.7.

H(x) =
1

µ(x) + 1
(2.7)

Therefore, the hazard function is dependent on the parameterisation of the effective average

function, µ(x). As detailed in Section 2.1.1, the function contains three parameters, θ =

{µ1, µ2, L} and takes an exponential functional form (Equation 2.8).

µ(x) = µ2 + (µ1 − µ2) exp
(
−x
L

)
(2.8)

The definitions of these parameters have been outlined previously in Section 2.1.1 but are

reiterated in Table 2.5.

2.2.3 Between-innings and long-term effects

To this point, the model is equivalent to that defined in Stevenson & Brewer (2017) and can

estimate how individual batting ability changes during an innings, as function of current score.

However, the model in Stevenson & Brewer (2017) assumes that a player’s underlying batting

ability is constant throughout their career, since the same parameter values are are used in each

innings. Realistically, a player’s expected scores should vary from innings to innings, due to

various individual-specific factors and several innings-specific effects discussed in this section.

Individual-specific effects

In order for the model to allow for temporal variation in ability between individual innings,

the effective average function in Equation 2.8 is extended by introducing a time dependence, t,
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giving

µ(x, t;θ) := batting ability on score x, in player’s tth career innings.

Again, µ(x, t) is expressed in units of a batting average. Taking the expectation over all

possible x values for a given innings, t, provides the quantity ν(t), which describes the expected

number of runs to be scored by a batsmen in their tth career innings, given the parameters, θ.

ν(t;θ) := expected number of runs to be scored in tth career innings.

Conditional on the model parameters, θ, the quantity ν(t;θ) is equivalent to

ν(t;θ) := expected batting average in tth career innings.

If all parameters defining µ(x, t) at a particular innings, t, are known, ν(t) is given by a

deterministic function of those parameters; it is the expectation of the implied distribution

over scores xt. As the aim of the model is to consider temporal variation in batting ability

between innings, when estimating estimating ν(t) for an individual player one must account

for individual-specific factors such as a player’s past performances and recent form. This may

be achieved by fitting a unique eye-in or peak batting ability parameter, µ2, for each of the t

innings in a player’s career, which is denoted by µ2t .

Restricting the set of parameters that are free to vary with time to only include µ2, implies

that the model assumes the process of getting your eye in occurs at a similar rate in each of a

specific player’s career innings. It seems a reasonable assumption that the getting your eye in

process is more closely related to an individual’s playing style, which for many players remains

relatively constant throughout a playing career, rather than their current underlying batting

ability. Conceptually, µ2t can be thought of as an innings-specific skill ceiling, which is assumed

to be more likely to vary over time than a player’s initial batting ability, µ1, or the rate at which

they get their eye in L. While it would be possible to allow both µ1 and L to also vary with

time, this would require the introduction of a number of additional parameters, which given the

already high dimensional parameter space, would result in severely decreased computational

efficiency for minimal improvement in terms of predictive accuracy.

Therefore, under this model specification the innings-specific effective average, µ(x, t), has

parameters θ = {µ1, {µ2t}, L}, and can be expressed as per Equation 2.9, where the dependence

of µ2 on time is explicitly noted.

µ(x, t) = µ2t + (µ1 − µ2t) exp
(
−x
L

)
(2.9)
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Gaussian processes

When estimating the set of {µ2t} terms that explain the variation in a player’s underlying

batting ability between innings, one must consider classes of models that afford a reasonable

amount of flexibility between terms, to account for the noisy data often observed in cricket. A

range of smoothing techniques and functions were contemplated, including splines and both

autoregressive and moving average models, commonly used in time-series modelling. Ultimately,

the prior for the set of {µ2t} terms was chosen to be specified using a Gaussian process, which

is a class of function that can identify trends in data, while also providing a decent amount

of flexibility to account for the high variance often present in a sequence of batting scores. A

Gaussian process is fully specified by an underlying mean value, λ, and a covariance function

K(tj, tk), where t represents the index of a player’s jth and kth career innings (MacKay, 2003;

Rasmussen & Williams, 2006). Therefore, the selected form of the covariance function, K(tj, tk),

defines how much a player’s ability is free to vary from innings to innings and is the key factor

when it comes to identifying whether recent form is significantly associated with current and

future ability.

Several families of covariance functions are available to choose from, depending on desired

temporal relationship and nature of between-innings variation one wishes to afford a player’s set

of underlying eye-in batting abilities, {µ2t}, and consequently their underlying effective batting

average, ν(t). A common choice is the squared exponential covariance function (Equation 2.10),

which was the choice of covariance function in Stevenson & Brewer (2018). Most covariance

functions have at least two parameters: (1) a scale parameter, σ, which controls the amount

of variation allowed from the mean value, λ; and (2) a length-scale parameter, `, which can

be conceptualised as the approximate distance one must move in the input space before the

function value can change significantly (Rasmussen & Williams, 2006).

K(tj, tk) = σ2 exp

(
−(j − k)2

`2

)
(2.10)

Other popular choices include the Matérn class of covariance functions, which has a number

of special cases, such as the Matérn 1
2

and Matérn 3
2

functions that can be selected, depending on

how closely related one wishes observations within the input and output space to be. Figure 2.4

illustrates how the choice of covariance function determines the relationship between two points

and how this can affect the flexibility of the corresponding Gaussian process.

As noted in Rasmussen & Williams (2006), it is important to restrict the covariance function

to only allow for Gaussian process functions that agree with the corresponding data points.

This requires careful consideration of the modelling problem at hand and an understanding of

possible Gaussian processes that could feasibly explain any signal in the data. With this in
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Figure 2.4. (a) Covariance functions and corresponding relationships between points in the
input space. (b) Gaussian processes with a stationary mean centred on 0, drawn using different
covariance functions. Each covariance function has fixed parameters: σ = 1, ` = 1.

mind, since the the publication of Stevenson & Brewer (2018) it has been determined that the

squared exponential covariance function does not allow for enough short-term variation in ability,

as it weights smooth functions with higher prior probability. As such, the covariance function

is overly restrictive of the plausible functions that can effectively model an individual’s career

batting data — short-term variability is ruled out from the beginning. On the other hand, a

Matérn 1
2

covariance function provides too much flexibility and tends to assume that a player’s

underlying ability fluctuates wildly from innings to innings, as illustrated in Figure 2.4.

When attempting to model data that exhibits more than one type of feature, such as both

short and long-term variation, it is possible to consider multiple covariance functions at once.

This is achieved by multiplying or adding covariance matrices that have been computed from two

separate covariance functions (Duvenaud et al., 2011). Addition is equivalent to an or operation

and is useful when at least one of the covariance functions is capturing a certain feature, while

multiplication can be thought of as an and operation and works well when both covariance

functions are capturing a feature present in the data.

Combining multiple covariance functions was an approach that was considered and trialled

during the model building process. However, increasing the number of covariance functions used

to produce Gaussian processes results in increased model complexity and uncertainty, due to the

increased number of parameters in the parameter space. Instead, a practical compromise between

the smoother squared exponential covariance function and more volatile Matérn 1
2

covariance

function, is achieved by considering the γ-exponential family of covariance functions (Rasmussen

& Williams, 2006) presented in Equation 2.11, which was the choice of covariance function used
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in Stevenson & Brewer (2021).

K(tj, tk) = σ2 exp

(
−|j − k|

γ

`γ

)
(2.11)

This covariance function provides a means of identifying both short and long-term variation

in ability, at the cost of just one additional smoothing parameter, γ. As γ → 1, the γ-exponential

covariance function is equivalent to an Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein,

1930), or AR(1) process, which is equivalent to the Matérn 3
2

covariance function in Figure 2.4.

As γ → 2, this function converges to the smoother squared exponential function. Thus, the

γ-exponential covariance function makes it possible to determine whether or not an individual

exhibits significant short-term, innings-to-innings variation in ability, or more long-term variation,

by observing the posterior distributions for ` and γ respectively.

Innings and venue-specific effects

In addition to the individual-specific effects that might affect underlying batting ability, such

as recent form, there are also a number of important factors that are worth considering in the

context of each individual innings. As noted briefly in Chapter 1, a unique characteristic of

cricket is the significant role that pitch and weather conditions can have on how a match plays out.

Vastly difference approaches to batting and bowling are observed between the dusty, spin-friendly

pitches of the sub-continent; the hard, flat pitches commonly prepared in Australia; and the

green pitches that offer additional assistance to pace bowlers, frequently found in countries such

as England and New Zealand. No two pitches are the same and as such, it can be difficult to

adjust to a new pitch from match to match, particularly when playing a series away from home,

in a foreign environment.

Therefore, due to the variable nature of cricket pitches, it is reasonable to assume that many

players will perform better in their home country, where they have grown up playing cricket and

are more familiar with the local conditions. The concept of home ground advantage is widely

observed across many sports (Pollard, 1986; Nevill & Holder, 1999). However, anybody who has

been to a cricket match — especially a Test match — can attest to the generally subdued nature

of the crowd, compared with the attendees of many other sporting events. It is therefore not

unreasonable to hypothesise that any home ground effect is more likely to be due to familiarity

with the local pitch and weather conditions, rather than an effect due to the crowd itself (Morley

& Thomas, 2005).

A second worthwhile consideration is the manner in which pitches tend to deteriorate over

the course of a match. Domestic first-class and international Test matches can span up to four

and five days respectively, with each team batting twice, for a total of four innings in a match.
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In many countries, batting is widely considered to become far more difficult as a match goes on,

as the condition of the pitch will often deteriorate due to exposure to the elements and general

wear and tear that occurs as a result of hundreds of deliveries being bowled. This notion is

summarised succinctly by W. G. Grace, a former English Test captain during the 19th-century.

“When you win the toss — bat. If you are in doubt, think about it, then bat. If you have

very big doubts, consult a colleague, then bat.”

– W. G. Grace

While not every pitch will deteriorate at the same rate, the data do suggest that batting

tends to become more difficult as a match continues. The empirical data presented in Tables 2.2,

2.3 and 2.4, show the differences in batting averages across all Test matches since January 1st

2000, split by venue, innings in match and team innings in match.

Table 2.2. Test match batting averages since January 1st 2000, split by venue.

Venue Innings Runs Dismissals Average

Home 18,945 560,003 16,404 34.14

Away 21,021 537,251 18,451 29.12

Neutral 288 6,557 253 25.92

Table 2.3. Test match batting averages since January 1st 2000, split by innings #.

Innings # Innings Runs Dismissals Average

1st 11,839 363,001 10,544 34.43

2nd 11,840 349,449 10,617 32.91

3rd 10,427 258,978 9,029 28.68

4th 6,148 132,383 4,918 26.92

Table 2.4. Test match batting averages since January 1st 2000, split by team innings # in
match.

Team innings # Innings Runs Dismissals Average

1st 23,679 712,450 21,161 33.67

2nd 16,575 391,361 13,947 28.06

These data suggest the hypothesis that players will generally bat better in home conditions,

early on in a Test match, is reasonable. Player batting averages are 17% higher at home venues,



44 2.2. Model specification

compared with away venues; and 20% higher in a team’s first innings of a match, compared with

their second innings. The batting average for neutral venues should be interpreted with caution;

aside from the greater implicit sampling error, many of these ‘neutral’ innings take place in UAE

where Pakistan hosted the majority of their international home fixtures during the 2010s. As

such, many of these innings are likely to be closer to away conditions for all but the Pakistan

players.

To account for these venue and innings-specifc effects, two indicator variables are introduced,

it and vt, representing whether it is a team’s first or second innings of a Test match and the

match venue, for a player’s tth career innings.

it =

1, if team’s first innings of a match

−1, if team’s second innings of a match
(2.12)

vt =


1, if batting at a home venue

0, if batting at a neutral venue

−1, if batting at an away venue

(2.13)

To estimate the innings and venue-specific effects, two new parameters, φ and ψ, are

introduced to the effective average function, µ(x, t), such that

µ(x, t) =
[
µ2t + (µ1 − µ2t) exp

(
−x
L

)]
× φit × ψvt . (2.14)

While the empirical data in Table 2.3 suggest that batting gets progressively more difficult

as a match goes on, given the relatively small sample size of career data for some players,

the innings-effect variable is considered on a binary scale. As shown in Table 2.4, the largest

difference between innings-by-innings average is between a team’s first and second innings of a

match. Therefore, considering team innings as a binary variable generally provides larger sample

sizes within each innings group, while still accounting for an effect related to deteriorating pitch

conditions. It is also worth noting an interaction effect between the innings and venue effects,

φ and ψ was considered. However, for the same reason the innings variable was considered on

a binary scale, the inclusion of such an effect was deemed to add little inferential value to the

model.

The venue variable, vt, has three levels, with the baseline, vt = 0, indicating a neutral venue.

The structure of this variable allows for the venue-specific parameter to be interpreted as a

set of multiplicative values, { 1
ψ
, 1, ψ}, affecting run scoring at away, neutral, and home venues

respectively. An estimate ψ > 1 indicates that a player performs better in home conditions,
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while ψ < 1 indicates a player performs better at venues away from home. Similarly, for the

innings effect, φ > 1 indicates that a player performs better in their team’s first innings of a

match, while an estimate φ < 1 indicates a player performs better in their team’s second innings.

For both ψ and φ, a value of 1 indicates that the player performs equally between away, neutral

and home venues, as well as between their team’s first and second innings of a match.

Under the specification of the effective batting average, µ(x, t), defined in Equation 2.14, it

is possible to obtain an estimate for a player’s batting ability at any given point of an innings,

for any innings of the player’s career. An estimate for ν(t) can then be obtained for every

innings in a player’s career, given both the venue and specific innings in the match, by taking the

expectation over all scores, x, which can be computed analytically via Equation 2.14. Plotting

ν(t) against time, t, provides a player’s batting career trajectory, illustrating how the model

estimates underlying batting ability to have varied over the course of a playing career.

2.2.4 Prior distributions

As per Sections 2.2.2 and 2.2.3, the model contains the following set of parameters:

θ = {µ1, {µ2t}, φ, ψ, L, λ, σ, `, γ}. (2.15)

To facilitate the underlying assumption {µ1t , Lt} < µ2t imposed by Stevenson & Brewer

(2017), parameters {C,D} ∈ [0, 1] are introduced with the following specifications,

µ1t ← Cµ2t ,

Lt ← Dµ2t .
(2.16)

This assumption is made to avoid considering effective average functions, µ(x, t), with excessively

large transition timescales, L, while also implying that we do not expect a batsman to get any

worse during the getting your eye in process.

As detailed in Section 2.2.3, the prior for the set of {µ2t} terms is specified by a Gaussian

process, with an underlying mean value, λ, and covariance function K(tj, tk;σ, `, γ), given by

Equation 2.11. As the effective average function measures batting ability in units of a batting

average — which by definition must be positive — it is actually the set of log{µ2t} terms that

are modelled using a Gaussian process, which are then back-transformed appropriately. This

ensures positivity for the entire parameter space of {µ2t}.
The model parameters, prior distributions and relevant definitions are summarised in Table

2.5. These priors are generally informative, but conservative, loosely reflecting expert judgement

in regards to the batting abilities of professional cricket players. The beta priors for C and D,
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Table 2.5. The batting career trajectory model hyperparameters, parameters, data, and effective
average functions, including the prior distribution for each quantity where relevant.

Quantity Interpretation Prior

Data

t Career innings index (time)

ot Out/not out flag in tth career innings

it Team innings # in tth career innings

vt Venue in tth career innings

xt Runs scored in tth career innings Likelihood function given in Equation 2.6

Within-innings effects

µ1,t Initial batting ability in tth career innings C ∼ Beta(1, 2);µ1,t ← Cµ2,t

Lt Transition parameter in tth career innings D ∼ Beta(1, 5);Lt ← Dµ2,t

Innings and venue-specific effects

φ Team innings # effect log(φ) ∼ Normal(log(1), 0.252)

ψ Venue effect log(ψ) ∼ Normal(log(1), 0.252)

Between-innings effects

{µ2,t} Eye-in batting ability in tth career innings log{µ2,t} ∼ GP(λ,K(tj, tk;σ, `, γ))

λ Mean value of Gaussian process log(λ) ∼ Normal(log(25), 0.752)

σ Scale parameter of covariance function, K(tj, tk) log(σ) ∼ Normal(log(0.2), 12)

` Length parameter of covariance function, K(tj, tk) log(`) ∼ Normal(log(20), 12)

γ Smoothing parameter of covariance function, K(tj, tk) γ ∼ Uniform(1, 2)

Covariance and effective average functions

K(tj, tk) Covariance function for Gaussian process Functional form given in Equation 2.11

µ(x, t) Batting ability on score x, in tth career innings, Functional form given in Equation 2.9

in units of a batting average

ν(t) Expected number of runs scored in tth career innings Computable from µ(x, t)

which affect how a player is estimated to get their eye in, are chosen as per the recommendation

in Stevenson & Brewer (2017). The log-normal priors over the innings and venue-specific effects

are centred on a value of 1, indicating the model’s prior assumption that a player bats equally as

well in home and away conditions in any innings of a match, unless the data suggest otherwise.

The log-normal prior for λ suggests that the median player will have an eye-in or peak batting

ability, µ2t , equivalent to an average of roughly 25 runs, which in the context of Test cricket is a

reasonable assumption. The conservative log-normal prior for the length-scale parameter, `, and

uniform prior for γ, allow for a flexible range of functions to be fitted to a player’s career data,

in order to measure any effects that may exist due to short and long-term form.

The log-normal prior for the scale parameter, σ, is the most restrictive and has been selected

for the specific modelling problem at hand. The proposed prior implies that the median player’s

eye-in batting ability in a given innings, µ2t , can deviate by approximately 20% from some

underlying mean value, λ, over the course of their playing career. If the prior for σ is left
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unchecked, or is too wide, the model can have a tendency to fit values for σ that are too large,

resulting in Gaussian processes that suggest underlying batting ability fluctuates wildly from

innings to innings. While some of these proposed Gaussian processes may theoretically fit the

data better, in many cases it is simply not believable that a player’s underlying ability can vary

by such a large amount between two innings.

2.2.5 Model fitting

Data

The batting career trajectory model has been fitted to the career data of all players who have

participated in at least one Test match innings since 1st Jaunary 2000, as per the ESPNcricinfo

data set discussed in Section 1.4.1. Due to a combination of law changes and technological

advancements, the pace and format of Test cricket has changed considerably since the first Test

match was played in 1877. The analysis of all players who have batted in the 21st century allows

for the results to be interpreted while maintaining a modern outlook on the game. The full data

set corresponds to a total of 1,018 players from 12 different countries, who have batted in a

combined 40,273 innings.

An excerpt of Kane Williamson’s Test career batting data are provided as an example in Table

2.6, illustrating how each of the relevant variables in the likelihood and effective average functions

are stored. The not out dummy variable, ot, indicates whether an innings was concluded on a

not out score, with a value of 1 indicating a not out innings and a value of 0 indicating an out

innings. Auxiliary information such as the opposition and ground the match was played at is

also included to provide context to each innings.

Table 2.6. Test match batting data for Kane Williamson’s 10 most recent Test innings, as of
1st December 2020.

Innings index (t) Runs Not out (ot) Innings Team innings (it) Venue (vt) Opposition Ground

131 51 0 2 1 1 England Mount Maunganui

132 4 0 1 1 1 England Hamilton

133 104 1 3 -1 1 England Hamilton

134 34 0 2 1 -1 Australia Perth

135 14 0 4 -1 -1 Australia Perth

136 9 0 2 1 -1 Australia Melbourne

137 0 0 4 -1 -1 Australia Melbourne

138 89 0 2 1 1 India Wellington

139 3 0 2 1 1 India Christchurch

140 5 0 4 -1 1 India Christchurch

Williamson’s full set of Test match batting data is then presented visually in Figure 2.5, with

each innings categorised by venue and team innings. The data for Williamson again illustrate
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the high innings-to-innings variation in batting scores, while also showing that players do not

always bat twice in a match. The latter can be attributed to one of a number of reasons, such

as the match coming to a premature conclusion due to poor weather, or because the player’s

second innings was not required as their team had already won the match.
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Figure 2.5. Career batting data for Kane Williamson in Test matches, with innings split by
venue and team innings # in match.

As the model assumes a player’s underlying ability is not influenced by the specific match

scenario, it is best applied to longer form cricket, such as domestic first-class or international

Test matches, where there is generally minimal external pressure on batsmen to score runs at

a prescribed rate. However, it is plausible that the model could provide insights into one-day

cricket, particularly for opening batsmen, whose role with the bat tends to be fairly consistent

between matches.
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Nested sampling

As discussed in Section 1.5.2, the batting career trajectory model is fitted using a C++ imple-

mentation of the nested sampling algorithm proposed by Skilling (2006). The output of the

nested sampling algorithm provides posterior samples for each of the model parameters, as well

as the marginal likelihood, which is used for model comparison. The effective sample size (ESS)

of each nested sampling run is also computed using Shannon entropy (Shannon, 1948), to ensure

the algorithm has effectively explored the parameter space. The results reported in Section

2.3 for each player are based on nested sampling runs initiated with 1,000 particles and use

1,000 MCMC steps per nested sampling iteration and were not sensitive to changes in these

computational parameters, indicating the sampling was sufficient.

The run-time of the model varies significantly, from seconds to days, depending on the

number of career innings in a player’s career record, which modifies the number of parameters

used to fit the model. As such, when applying the model to the careers of hundreds of players,

the model fitting process can take weeks to complete. This can quickly become an issue when

trying to maintain up-to-date results; in the height of summer Test matches are played on a

near-weekly basis. Therefore, by the time the nested sampling algorithm has finished running

on all players, another match may have been played, requiring the model to be re-fitted to the

relevant players’ updated career batting data. To deal with this problem, the model fitting

process was implemented via parallel cloud computing, using the high performance computing

facilities provided by the New Zealand eScience Infrastructure (NeSI). This allows the batting

career trajectory model to be fitted to all players simultaneously, rather than sequentially,

considerably increasing the computational efficiency of the entire procedure.

2.3 Results

2.3.1 Analysis of individual batsmen

When assessing the model output, the computation of the posterior predictive distribution for ν(t)

is of primary concern and can be obtained by drawing a number of posterior parameter samples.

Plotting the effective average, ν(t), against time, t, provides the batting career trajectory for

an individual player, estimating how a player’s underlying batting ability has varied over the

course of their career to date, as well as providing a forecast of their future ability. Career

trajectories of all 1,018 players analysed are available to view via an RShiny application at

www.oliverstevenson.co.nz/phd cricket visualisation.

The career trajectory for Kane Williamson is presented in Figure 2.6, showcasing the evolution

of his Test match batting ability. The posterior predictive estimate for ν(t) in red represents
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Williamson’s underlying batting ability in units of a batting average, assuming a neutral venue

and his team’s innings number in the match is unknown. The posterior predictive estimate in

blue provides the estimate for ν(t), given the innings-specific variables, it and vt, are known.
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Figure 2.6. Test match batting career trajectory (the posterior median of ν(t)) for Kane
Williamson, including the 95% credible interval (shaded region). A prediction for ν(t) is also
made for 20 innings into the future (purple).

Similar to the posterior distribution for the getting your eye in effective average function,

µ(x), detailed in Stevenson & Brewer (2017), the posterior distribution for ν(t) is not necessarily

symmetric and can have relatively heavy tails. As such, the posterior point estimate for ν(t) is

computed using the posterior median, rather than the posterior mean. The posterior median also

provides more accurate predictions of future scores compared with the posterior mean, which is

discussed in more detail in Section 2.4. Posterior summaries for each of the model parameters

are presented in Table 2.7.

A subset of 1,000 posterior samples used in the computation of the posterior predictive

distribution for ν(t) are shown in Figure 2.7. Here, it is possible to observe the variety of feasible

career trajectories, ranging from smoother functions that vary gradually over time, to ragged,
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more erratic looking processes that fluctuate significantly from innings to innings. Figure 2.7

also depicts the amount of uncertainty in the model’s predictions of past, present, and future

batting ability.
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Figure 2.7. A subset of 1,000 posterior samples for ν(t), the expected score given the parameters,
for Kane Williamson. The purple lines represent predictions for ν(t) for 20 innings into the
future. Due to the noisiness of batting scores, a range of career trajectories are compatible with
the data. The posterior predictive estimate for ν(t) is overlaid to illustrate the moderate amount
of uncertainty in the estimates.

Individual-specific effects

As shown in Figure 2.6, the model estimates that Williamson’s underlying batting ability in Test

cricket has varied gradually over the course of his career. At the beginning of his career, the

comparatively lower posterior predictive estimates for ν(t) imply that Williamson was not as

good of a batsman as indicated by his current career average of 50.99. Since his first Test innings

his ability appears to have improved, likely as a result of gaining experience in a variety of

match conditions and being exposed to a range of world-class bowling attacks. In order to better
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understand what the model is suggesting about Williamson’s career trajectory, one can consult

the posterior distributions for each of the individual-specific Gaussian process parameters, which

are presented in Figure 2.8.
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Figure 2.8. Posterior distributions for each of the Gaussian process parameters, λ, σ, ` and
γ. Red lines indicate the respective prior distributions. It appears as though Williamson’s data
are unable to modify the prior distributions for both ` and γ, suggesting the model is unable to
distinguish between smooth or ragged underlying career trajectories, due to the noisy data.

Clearly, a lot is learnt about λ, suggesting that the data are informative about Williamson’s

set of underlying eye-in abilities, {µ2t}. In regards to σ, there is less posterior weight assigned to

values of σ near zero. This result provides some evidence to support the presence of long-term

variation in Williamson’s underlying batting ability, as career trajectories with low σ values

imply there is little variation in ability over an individual’s career. However, the data have been

unable to inform about smoothness parameters, ` and γ, which provides no evidence to either

confirm or refute the presence of short-term, innings-to-innings variation in ability. That is,

there is no reason to confirm or refute the notion that Williamson’s underlying batting ability is

affected by short-term form.



Chapter 2. Estimating batting career trajectories 53

Table 2.7. Posterior parameter summaries for Kane Williamson, including the 68% and 95%
credible intervals.

Parameter Mean Median 68% C.I. 95% C.I.

C 0.30 0.29 (0.21, 0.40) (0.15, 0.54)

D 0.12 0.11 (0.06, 0.18) (0.03, 0.30)

λ 53.9 53.8 (40.7, 66.1) (26.8, 81.3)

σ 0.29 0.26 (0.11, 0.46) (0.04, 0.75)

` 38.9 28.2 (11.9, 62.5) (4.2, 141.1)

γ 1.49 1.49 (1.15, 1.83) (1.02, 1.97)

φ 1.03 1.03 (0.94, 1.12) (0.86, 1.22)

ψ 1.11 1.11 (1.02, 1.21) (0.93, 1.32)

Innings and venue-specific effects

In Figure 2.6, the posterior predictive estimate for ν(t) that includes the innings and venue-

specific effects (blue), indicates that historically, Williamson has tended to perform better

at home venues (black bars), compared with away venues (orange bars). Similarly, superior

estimates for ν(t) are observed when Williamson is batting in his team’s first innings of a match

(circles), compared with his team’s second innings (triangles), which is visible from the career

trajectory’s jagged behaviour when observing changes between his first and second innings in

the same match. These results are fairly typical for many player’s batting career trajectories.

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

φ

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

ψ

D
en

si
ty

Figure 2.9. Posterior distributions for the innings-specific parameters, φ and ψ. Red lines
indicate the Log-normal(1, 0.252) prior. The data appear to provide moderate evidence that
Williamson bats better at home venues, in his team’s first innings of a match.

Posterior distributions for the innings-specific effects, φ and ψ, are shown in Figure 2.9,

suggesting the data have been somewhat informative with respect to both parameters. The
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parameter point estimates presented in Table 2.7 allow for the magnitude of these effects to be

quantified. The point estimate for ψ suggests that one can expect Williamson to score 11% more

runs when batting at a home venue, compared with a neutral venue. It is possible to compare

performances at a home venue against an away venue by squaring the parameter estimate for ψ,

giving an estimate of ψ2 = 1.24, and corresponding 95% credible interval (0.87, 1.73). That is to

say, Williamson’s underlying ability is estimated to be 24% higher when batting at home venues,

compared with away venues. Similarly, the multiplicative effect of batting in his team’s first

innings of a Test, compared with the second innings, can also be obtained by squaring, giving

an estimate of φ2 = 1.07 and corresponding 95% credible interval (0.75, 1.48), indicating an

expected 7% difference in runs scored between innings in the same match. It is worth noting

that the relatively large uncertainties over φ and ψ suggest there is no definitive evidence at the

individual level that Williamson necessarily performs better in home conditions, in his team’s

first innings of a match. However, when the data for all players are considered jointly in Section

2.3.2, the likely presence of such effects becomes more apparent.

Quantifying batting career progression

As seen in Figure 2.6, Williamson’s underlying ability appears to have developed over the course

of his Test career to date. Similar to the model estimates provided in Boys & Philipson (2019),

the proposed batting career trajectory model is able to quantify batting ability, in units of

a batting average, at the lowest and highest points of a player’s career. This allows for the

comparison of batsmen across eras, although unlike Boys & Philipson (2019), an adjustment to

account for how difficult batting was in the era is not made. However, recalling that T is the

total number of career innings a player has batted in, the batting career trajectory model is able

to make a prediction for ν(T + 1), the quantity defining the number of runs an individual player

is expected to score in their next Test innings. These predictions are typically made assuming a

neutral venue and it is unknown whether the player is batting in their team’s first or second

innings, however, if the venue and innings-specific variables vt and it are known, the information

can be incorporated into the prediction.

Table 2.8. Posterior point estimates for ν(t) at Kane Williamson’s lowest and highest points
of his career and prediction for his next career innings, ν(T + 1), including the 68% and 95%
credible intervals.

Point estimate 68% C.I. 95% C.I.

Career low ν(t) 33.2 (24.8, 43.5) (18.2, 52.7)

Career high ν(t) 73.8 (59.3, 98.1) (50.4, 133.9)

ν(T + 1) 47.7 (36.8, 58.9) (26.1, 74.2)
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Figure 2.10. Posterior distribution for ν(t) at the estimated lowest and highest points of
Kane Williamson’s Test career to date, and the career innings index, t, at which Williamson is
estimated to have experienced the lowest and highest points of his career.

The posterior distribution for ν(t) at Kane Williamson’s lowest and highest points of his

career to date are presented in Figure 2.10 and are summarised in Table 2.8. At the highest

point of Williamson’s career, his underlying ability corresponded to an expected average of 73.8,

which incidentally was the highest estimate among all players globally at the time. At the lowest

point of his career, the model estimates Williamson to have had an expected average of 33.2 —

over a 50% difference in estimated ability compared with his career peak.

Furthermore, the posterior distribution estimating when Williamson experienced these points

of his career are also shown in Figure 2.10. Perhaps unsurprisingly, the estimates in Figure 2.8

suggest that Williamson most likely experienced the lowest point of his career relatively early on.

This finding is consistent with the cricketing concept of finding your feet, whereby players are

unlikely to begin their Test careers playing to the best of their ability, which was a major focus

of Stevenson & Brewer (2018, 2021). Rather, it takes time and experience for players to adjust

to the demands of international cricket and can take players a number of innings to reach their



56 2.3. Results

peak ability. In the case of Williamson, Figure 2.10 suggests that he most likely experienced the

peak of his career sometime after his 60th career innings, or he is still yet to experience it. Given

Williamson has only recently turned 30 years of age, he likely has a number of years left ahead

of him where his underlying batting ability will be close to its peak.

2.3.2 Hierarchical analysis of batsmen

In order to generalise the results across the entire group of 1,018 players analysed, a hierarchical

analysis was performed for the set of Gaussian process parameters, {λ, σ, `, γ}, as well as the

set of innings and venue-specific parameters, {φ, ψ}. Defining a set of hyperparameters, η, for

each relevant model parameter and implementing a hierarchical model structure, allows for the

quantification of the typical values that each parameter is clustered around, without having to

analyse the data jointly. This is achieved by obtaining posterior samples for the appropriate

subset of model parameters, θ = {φ, ψ, λ, σ, `, γ}, for all players, then post-processing the results

using MCMC (Hastings, 1970), to construct what the hierarchical model would have produced.

The analysis assumes that the typical values for the subset of parameters, {λ, σ, `, φ, ψ},
are approximately log-normally distributed, while γ is assumed to follow a normal distribution,

truncated at [1, 2]. Based on these assumptions, the hierarchical model structure for the model

parameters that define the Gaussian process takes the following form, conditional on the set of

hyperparameters, η = {µλ, ξλ, µ`, ξ`, µσ, ξσ, µγ, ξγ, µφ, ξφ, µψ, ξψ}:

log(λ) ∼ Normal(log(µλ), ξ
2
λ),

log(`) ∼ Normal(log(µ`), ξ
2
` ),

log(σ) ∼ Normal(log(µσ), ξ2σ),

γ ∼ Normal[1,2](µγ, ξ
2
γ),

log(φ) ∼ Normal(log(µφ), ξ2φ),

log(ψ) ∼ Normal(log(µψ), ξ2ψ).

(2.17)

The hyperparameters, η = {µλ, ξλ, µ`, ξ`, µσ, ξσ, µγ, ξγ, µφ, ξφ, µψ, ξψ}, are assigned the follow-

ing prior distributions:

µλ, µ` ∼ Uniform(0, 50),

µσ, µγ, µφ, µψ ∼ Uniform(0, 2),

ξλ, ξ`, ξσ, ξφ, ξψ ∼ Uniform(0, 2),

ξγ ∼ Uniform(0, 1).

(2.18)

Given the data of all 1,018 analysed players, D, and the hierarchical model structure defined

in Equations 2.17 and 2.18, the marginal posterior distributions for the set of hyperparameters,
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η, may be written as per Equation 2.19.

P (η|D) ∝ P (η)
N∏
i=1

E
(
f(θi|η)

P (θi)

)
(2.19)

Here, f(θi|η) is the log-normal or truncated normal prior distribution assigned to each of

the model parameters in Equation 2.17, conditional on the relevant hyperparameters, applied

to the data of the ith player in the analysis. The expectation term inside the product can then

be approximated by averaging over the posterior samples for each player. Each of P (θi) and

P (η) relate to the prior distributions assigned to the model parameters and hyperparameters

respectively, defined in Table 2.5 and Equation 2.18.

The MCMC algorithm was run for 100,000 iterations for each model parameter, to obtain the

joint posterior distribution for the relevant hyperparameters using Equation 2.19. For example,

to obtain the joint posterior for the hyperparameters relating to model parameter λ, the relative

quantities in Equation 2.19 are defined as follows: η = {µλ, ξλ}, θ = λ.

The joint posterior distributions for the set of hyperparameters defining each of the Gaussian

process parameters, are shown in Figure 2.11, while the posterior distributions associated with

the hyperparameters defining the innings and venue-specific effects, are shown in Figure 2.12.

As γ is assumed here to follow a truncated normal distribution, rather than the Uniform(1, 2)

distribution defined in Table 2.5, the central value of the Uniform hyperpriors assigned to µγ

and ξγ were chosen as the starting point of the algorithm, corresponding to values of 1.5 and 0.5

respectively. As each of the starting points appear to be fairly typical of the corresponding joint

posterior distribution, no burn-in period was applied (Meyn & Tweedie, 1993).

In the case of the Gaussian process parameters, it appears as though the hierarchical model

was somewhat informative in respect to λ and σ, but less so for ` and γ. The results for ` and

γ are hardly surprising, as the model generally had difficulty in distinguishing between career

trajectories with shorter and longer length-scales, for the majority of players analysed. One

result of potential interest with respect to γ, is that the posterior parameter space tends to have

lower density where µγ → 1.0 and µγ → 2.0. This suggests that for the typical batsman, the

hierarchical analysis assigns less posterior weight to highly volatile batting career trajectories

or overly smooth trajectories, similar to the Gaussian processes generated by the Matérn 1
2

and

squared-exponential covariance functions in Figure 2.4. The main area of high density for λ

supports the prior assumption that the typical player has an eye-in effective batting average

close to 25.0 runs, although as expected, the relatively variable nature of values for µλ reflects

the wide range of batting abilities seen in Test cricketers. For σ, values for µσ of, or near zero,

appear to have low density, indicating that the average player is likely to exhibit some form of

temporal variation in their batting ability over the course of their career.
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Figure 2.11. Joint posterior distributions for the set of hyperparameters
{µλ, ξλ, µ`, ξ`, µσ, ξσ, µγ, ξγ}, shown across the uniform prior parameter space. Dark red
indicates areas of high density, while dark blue indicates areas of low density. The darkest red
areas are 256 times more dense than the darkest blue areas as shown by the scale. The white
circle indicates the starting point of the MCMC algorithm.
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Figure 2.12. Joint posterior distributions for the set of hyperparameters {µφ, ξφ, µψ, ξψ}, shown
across the uniform prior parameter space. Red indicates areas of high density, while dark blue
indicates areas of low density. The darkest red areas are 256 times more dense than the darkest
blue areas as shown by the scale. The white circle indicates the starting point of the MCMC
algorithm.

In the case of the innings and venue-specific parameters, the majority of the posterior mass

for both µφ and µψ is centered on values greater than 1, as presented in Table 2.9. This result

supports for the initial assumption; that the average player tends to perform better with the

bat at home venues, in their team’s first innings of a Test match, although the large amount of

uncertainty in the parameter estimates must be acknowledged.

Table 2.9. Posterior mean and credible intervals for hyperparameters µφ and µψ.

Hyperparameter Posterior mean 68% C.I. 95% C.I.

µφ 1.11 (0.65, 1.32) (0.28, 1.92)

µψ 1.11 (0.66, 1.38) (0.27, 1.92)

2.3.3 Comparison of batting career trajectories

To illustrate how the model can be used to directly compare the abilities and careers of multiple

players, the batting career trajectories for the big four have been plotted in Figure 2.13. All four

players appear to exhibit behaviour typical of finding your feet, taking a number of innings to

reach their peak ability, with each player exhibiting some form of improvement during the early
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stages of their careers. Interestingly, Williamson appears to be the player who took the longest

to fulfill his potential, which is perhaps unsurprising as he was just 20 years old when making

his Test debut, compared with Smith (21), Kohli (22) and Root (21). As a result, Williamson

was possibly a less developed batsmen when first entering the Test arena.
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Figure 2.13. Test match batting career trajectories (the posterior median for ν(t)) for the big
four: Steve Smith, Virat Kohli, Kane Williamson and Joe Root, including predictions of ability
for the next 20 innings (dotted).

The career trajectories presented in Figure 2.13 suggest there is an argument to be made

that Williamson is the most improved batsmen among the big four. In the early stages of their

respective careers, Williamson had the lowest estimated ability, however, at his peak, Williamson

has the highest estimated ability. Nevertheless, unlike Steve Smith and to a lesser extent Virat

Kohli, Williamson has been unable to sustain peak performance for an extended period of time.

On the other hand, English batsman Joe Root experienced a successful start to his career, but

has been unable to maintain the same level of continual improvement as the others. While still

a world class batsmen, as suggested by his career average of 48.0, Root appears to be a model of

consistency, without exhibiting the same stellar patches of form seen by Smith and Williamson.
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As a counterpoint to the idea of finding your feet, seen in the career data of the big four and

many other players, Figure 2.14 depicts the career trajectories of four players who made their

Test debuts at a much older age, with a vast amount of domestic experience behind them. Each

of these players made their international debuts in the latter half of their professional careers

and did not exhibit the same behaviour typical of a player finding their feet. While no amount

of domestic cricket can truly prepare a player for the challenges of Test cricket, this result does

at least suggest there is some evidence to support the idea that more experienced players may

reach their peak abilities much quicker than those who debut in their teens or early twenties,

such as the big four.
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Figure 2.14. Test match batting career trajectories (the posterior median for ν(t)) for a group
of players who reached their peaks very early in their Test careers. The age at which each player
made their Test debut is also provided.
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2.3.4 Player batting rankings

The model results can also be used to gain an understanding of who the best batsmen in the

world are at present. Each individual player has an estimate for ν(T + 1), where T + 1 is the

innings index for the player’s next career innings. The current1 top 20 batsmen in the world

according the model are presented in Table 2.10, where players are ranked by the number of

runs they are expected to score in their next innings. Players must have batted in a minimum

of 15 Test innings to be ranked. An up-to-date list of the top 100 Test batsmen is maintained

at www.oliverstevenson.co.nz/#research. Note the predictions for ν(T + 1) assume the

player’s next innings is played at a neutral venue and it is unknown whether the player is batting

in their team’s first or second innings of a match. For comparison, each player’s ICC rating and

world ranking are also provided. The rankings between methods are compared in Figure 2.15 are

generally similar, for example, Steve Smith is unanimously agreed to be the top ranked batsmen

in the world, however, there are several notable differences.

Firstly, the proposed batting career trajectory model ranks Indian batsman Rohit Sharma

8th in the world, while he is ranked 16th according the the ICC ratings. Looking closely at

Sharma’s batting career record indicates that he has an unusually high number of not out scores

greater than 50. This suggests that there a number of occasions where Sharma has overcome

the difficult getting your eye in process, but has not had the opportunity to turn these scores

into large scores of 100 or more. As discussed in Section 2.2.1, for not out scores, the proposed

model assumes the player would have gone on to score some unobserved score, conditional on

µ(x, t). Meanwhile, the ICC ratings provide not out innings with an undefined bonus. In this

manner, the proposed model supports the conclusion in Boys & Philipson (2019), that the ICC

does not appropriately adjust for not out scores and provides a bonus that, at least for large

scores, is too low.

Secondly, the ICC ratings method appears to weight recent performances more heavily than

the batting career trajectory model. This is evident from the disparity in model and ICC

rankings for certain players who have experienced a recent run of good form. For example,

English all-rounder Ben Stokes is presently ranked 8th by the ICC, but has a ranking of 17th

under the proposed model. In his most recent 20 Test innings, Stokes has averaged 48.6 runs

per dismissal, increasing to an average of 58.0 in his most recent 10 innings. This is well above

his career average of 37.8, which suggests the difference in Stokes’ rankings is potentially due to

the ICC ratings placing more emphasis on recent innings. Similarly, English wicket-keeper Jos

Buttler is ranked 21st according to the ICC ratings, but 40th by the batting career trajectory

model. Buttler has averaged 47.1 in his most recent 10 Test innings, considerably higher than

his career average of 33.9. Regrettably, the ICC rating methodology is not public, making it

1as of 1st December 2020
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Table 2.10. Current (as of 1st December 2020) top 20 Test match batsmen ranked by expected
number of runs scored in their next career innings, ν(T + 1), including the 68% credible interval.
ICC Test batting ratings and world rankings (#) are shown for comparison.

Rank Player Innings Career average ν(T + 1) ICC rating (#)

1. S. Smith (AUS) 131 62.8 57.9 (47.9, 68.8) 911 (1)

2. M. Labuschagne (AUS) 23 63.4 55.8 (43.0, 75.2) 827 (3)

3. B. Azam (PAK) 53 45.4 53.5 (40.8, 75.8) 797 (5)

4. V. Kohli (IND) 145 53.6 51.4 (43.4, 59.8) 886 (2)

5. D. Warner (AUS) 155 48.9 48.0 (41.1, 56.8) 793 (6)

6. K. Williamson (NZ) 140 51.0 47.7 (36.8, 58.9) 812 (4)

7. A. Mathews (SL) 154 45.3 47.6 (40.4, 59.3) 658 (17)

8. R. Sharma (IND) 53 46.5 46.6 (37.7, 58.9) 674 (16)

9. M. Agarwal (IND) 17 57.3 46.2 (34.2, 63.5) 714 (11)

10. J. Root (ENG) 177 48.0 45.7 (39.4, 52.3) 738 (9)

11. R. Taylor (NZ) 178 46.1 43.6 (36.9, 50.6) 677 (15)

12. C. Pujara (IND) 128 48.7 43.4 (36.6, 50.6) 766 (6)

13. A. Ali (PAK) 152 42.9 42.8 (35.5, 52.1) 627 (23)

14. A. Rahane (IND) 109 42.9 41.6 (34.3, 50.5) 726 (10)

15. T. Latham (NZ) 92 42.3 40.8 (33.9, 48.8) 710 (12)

16. M. Rahim (BAN) 130 36.8 40.5 (33.8, 54.6) 654 (18)

17. B. Stokes (ENG) 122 37.8 39.4 (33.3, 47.7) 760 (8)

18. D. Chandimal (SL) 103 40.8 39.3 (31.3, 47.2) 563 (28)

19. T. Head (AUS) 28 42.0 38.1 (29.5, 49.2) 643 (20)

20. BJ. Watling (NZ) 110 38.5 38.1 (31.1, 45.4) 621 (25)

difficult to assess and compare how the ICC estimates the effects of recent performances and

short-term form on current and future ability. An exponential weighted average is used, however

the length scale is not public knowledge.

Thirdly, it is worth recalling that the expected number of runs to be scored in the next

innings, ν(T + 1), assumes a neutral venue. Under this assumption, the model estimates South

African batsmen Quinton de Kock and Aiden Markram to score 35.0 and 25.3 runs in their next

innings respectively. Each of these predictions are below de Kock and Markram’s career averages

of 39.1 and 38.5, however, the estimates are not lower due to a run of recent poor form. Rather,

de Kock and Markram both excel when batting in home conditions but struggle heavily when

batting at venues outside of South Africa. Therefore, when considering a prediction at a neutral

venue, both players are penalised by the proposed model, as they are yet to prove themselves

in conditions outside of their home country. As visible in Figure 2.15, this results in markedly

different rankings between the batting career trajectory model and ICC rating method (37th
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versus 13th for de Kock; 75th versus 26th for Markram).

Finally, the ICC method applies a decay to the ratings of players who miss selection in their

side’s recent Test matches. While well-intentioned to penalise players who are not consistently

active in the Test scene, this approach has the unintended effect of disproportionately punishing

players from countries who generally play less Test cricket. Missing a series due to injury or

personal reasons can have a significant impact on batting ratings for players from smaller Test

playing sides such as New Zealand or the West Indies, who may only play in a handful of Test

series each year. Conversely, players from Australia, England and India are able to miss the

odd game with less impact on their batting rating; these nations tend to have the luxury of

competing in four and five-match series on a much more frequent basis and consequently players

are able to recoup their ratings much faster.

While both methods provide an indication of overall player ability, the batting career trajectory

model has the advantage of quantifying batting ability in units of a batting average, which

can be easily understood by all viewers of cricket. As such, the proposed model can quantify

differences in ability between players in a far more meaningful manner. Rather than concluding,

‘Steve Smith is 99 rating points better than Kane Williamson’, the model can make more useful

probabilistic statements by computing P (νSmith(TSmith + 1) > νWilliamson(TWilliamson + 1)). In

this case, one can conclude ‘Steve Smith has a 56.4% chance of outscoring Williamson in their

next respective innings’, or, ‘Steve Smith is estimated to outscore Williamson by 10.1 runs in

their next respective innings’.

Such probabilistic statements can be particularly useful when comparing players with similar

career averages, for example, Pakistani batsmen Babar Azam (45.4) and Azhar Ali (42.9).

Objectively, based solely on the batting average, one would assume that these two players are

relatively similar in terms of their underlying ability. However, the predictions obtained from

the batting career trajectory model suggest that while both players are presently among the best

batsmen in the world, Azam is more likely the superior batsmen, given his higher prediction for

ν(T + 1) of 53.5, compared with 42.8 for Ali. Comparing the relevant posterior distributions for

ν(T + 1), one can conclude ‘Azam is predicted to outscore Ali by an average of 10.7 runs in their

next respective innings’, or, ‘Azam has a 55.4% posterior probability of outscoring Ali’. Having

access to such insights would provide coaches and selectors with a more meaningful measure

of predicting and quantifying the risks and rewards of selecting one player over another. As

usual, these predictions ignore any innings or venue-specific effects, which can easily be taken

into account if this information is known. Additionally, the predictions assume that players in

question will be facing the same quality of bowling during their next innings, which is reasonable

when comparing two batsmen from the same team, or even when batsmen between teams that

have bowling attacks of similar strength.
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Figure 2.15. Comparison of current (as of 1st December 2020) world rankings between the
batting career trajectory model and the established ICC ratings. The proposed model considers
players in red to be overvalued by the ICC method, while players in blue are considered to be
undervalued. Players in black represent cases where there is consensus in rankings between the
two methods.
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2.4 Model diagnostics

2.4.1 Model prediction

The model’s ability to describe variations in a player’s underlying ability, via the career trajectory,

is a secondary feature and can only be considered useful if the model is able to predict future

player performance more accurately than other known methods. Therefore, the primary means

of assessing model performance is to compute the relative prediction errors for future innings.

When making a prediction for a player’s next career score, xT+1, one can assume the model

has access to all previous scores, {x1, ..., xT}. However, xT+1 is a score yet to be observed.

Instead, the predictive capabilities of the model are assessed by obtaining a prediction for xT ,

and comparing this estimate to the actual observed value of xT . The subsequent prediction error

is then computed using the mean squared error (MSE). This is achieved using leave-out-out

cross-validation (Sammut & Webb, 2010), whereby each player’s most recent observed score,

xT , is removed from the data and a prediction for xT is realised by fitting the model using the

remaining data, {x1, ..., xT−1}. To avoid the complications that arise when predicting not out

scores, the most recent out score is predicted for each player.

To provide a means of comparison with the batting career trajectory model, predictions and

corresponding prediction errors have been computed for set of simple moving average (SMA)

models of varying orders. The SMA models compute a prediction for a player’s next career score,

using the previous, 10%, 25%, 50% and 100% of a player’s career data. For example, if a player

has batted in 100 career innings, the SMA(10%) model computes a prediction for their next

score by taking the average of their most recent 10 innings, while the SMA(50%) model uses the

most recent 50 innings. Note that the SMA(100%) model is equivalent to a model that assumes

a player has a batting ability equal to their career batting average, at any given point of their

career.

As leave-one-out cross-validation requires a player’s most recent innings where they were

dismissed to be removed from the data, prediction errors cannot be predicted for players who

have only batted in one career innings, or for players who have never been dismissed. Overall,

prediction errors were able to be computed for 913 of the 1,018 players in the ESPNcricinfo data

set. The performance of each model is assessed by computing the respective model predictions

for all players, and taking the mean squared prediction error (MSE), which are presented in

Table 2.11. The MSE is also shown for the subset of batsmen who have batted in a minimum of

10, 20 and 50 career innings.

When it comes to predicting the next score in a player’s career, the batting career trajectory

model outperforms all the SMA models. Additionally, the proposed model is able to provide a

more accurate description of a player’s career trajectory to date and is able to deal with the
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Table 2.11. Mean squared prediction errors using leave-one-out cross-validation. The batting
career trajectory model outperforms all other models, while the SMA(10%) model tends to perform
worst of all.

Minimum # of career innings

Model No minimum 10 innings 20 innings 50 innings

SMA(10%) model 633.1 751.3 684.2 857.7

SMA(25%) model 588.4 696.3 646.1 837.7

SMA(50%) model 608.2 704.2 661.7 859.0

SMA(100%) model 589.1 681.9 655.6 829.3

Batting career trajectory model 544.0 649.6 616.8 785.8

complexities of not out scores in the data. Of the fitted SMA models, the SMA(10%) model tends

to perform worst of all, suggesting that only using recent form to predict player performance is

inadvisable.

While the batting career trajectory model appears to provide the most accurate predictions

of player performance, the best fitting SMA model appears to be the SMA(100%) model, which

is equivalent to using a player’s current batting average to predict future performance. This is a

finding of particular interest and provides a stark warning to coaches and selectors; unless you

are utilising modern analytical techniques to evaluate the effects of recent form on a player’s

underlying ability, it may be incredibly risky to use recent performances as an indicator of what

is come in the future. Additionally, this may also cast some doubt on the accuracy of the ICC

ratings if the exponential scale length is too small.

It is also worth noting that the same priors were used when fitting the batting career

trajectory model to each player’s career data. Doing so assumes that no prior information

is known in regards to the batting abilities of individual players, which is often not the case.

Instead, it would be plausible to apply different priors when analysing the careers of players

who are considered specialist batsmen, all-rounders or bowlers, as there is a clear disparity in

career batting averages, depending on a player’s role in their team. It would also be reasonable

to make use of domestic first-class career data when predicting how successful a player is going

to be at the Test level. No doubt including such auxiliary information would further improve

the predictive capabilities of the proposed batting career trajectory model.

2.4.2 Model comparison

As discussed in Section 1.5.2, a major advantage of using nested sampling to fit Bayesian models

is the ability to compute the marginal likelihood at minimal extra cost, via Equation 1.9. This



68 2.4. Model diagnostics

provides another means of assessing the fit of the batting career trajectory model, in addition to

the computation of prediction errors in Section 2.4.1.

Table 2.12. Marginal likelihood estimates for the top 20 Test match batsmen as ranked by the
batting career trajectory model. The summation of marginal likelihoods for all players and the
logarithm of the Bayes factor averaged across all players shows the data generally support the
proposed model over the SMA(100%) model.

Rank Player log(Z) log(Z0) log( Z
Z0

)

1. S. Smith (AUS) −592.0 595.0 3.0

2. M. Labuschange (AUS) −120.5 −120.7 0.2

3. B. Azam (PAK) −214.7 −219.1 4.4

4. V. Kohli (IND) −669.6 −676.5 6.9

5. D. Warner (AUS) −721.9 −727.9 6.0

6. K. Williamson (NZ) −623.9 −630.2 6.3

7. A. Mathews (SL) −642.4 −639.3 -3.1

8. R. Sharma (IND) −219.3 −225.1 5.8

9. M. Agarwal (IND) −86.8 −87.7 0.9

10. J. Root (ENG) −797.9 −798.3 0.4

11. R. Taylor (NZ) −756.7 −762.8 6.1

12. C. Pujara (IND) −586.1 −589.9 3.8

13. A. Ali (PAK) −672.8 −684.6 11.8

14. A. Rahane (IND) −469.3 −469.7 0.4

15. T. Latham (NZ) −416.9 −420.9 4.0

16. M. Rahim (BAN) −553.4 −556.5 3.1

17. B. Stokes (ENG) −541.6 −545.9 4.3

18. D. Chandimal (SL) −451.5 −450.7 -0.8

19. T. Head (AUS) −125.9 −125.0 -0.9

20. BJ. Watling (NZ) −441.8 −445.2 3.4

All players −151, 909.5 −153, 473.4 1.5

In Table 2.12, the marginal likelihood is used to compare the support for the batting career

trajectory model, Z, against the SMA(100%) model that assumes a player’s ability remains

constant throughout their career, Z0. The marginal likelihoods are presented for each of the top

20 ranked Test batsmen identified in Section 2.3.4. The logarithm of the Bayes factor between

the two models are also shown for each player, indicating the factor by which the proposed

model is preferred over the SMA(100%) model. A positive value for this quantity implies that

the batting career trajectory model is more likely to apply to a player’s career data than the
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SMA(100%) model; that is, there is a reasonable probability that a player’s underlying ability

has not remained constant throughout their career. The sum of marginal likelihoods over all

players is also presented for each model, alongside the logarithm of the Bayes factor, averaged

across all players.

In general, the batting career trajectory model is favoured over the SMA(100%) model for the

majority of players. This provides further evidence to support the presence of temporal variation

in batting ability during the careers of many players. It is worth noting that as the nested

sampling algorithm is inherently a Monte Carlo process, the estimates for marginal likelihood

are subject to sampling error. However, the algorithm was run with a large number of particles

and MCMC iterations per nested sampling iteration, and this error is very small when compared

with the differences in marginal likelihoods between the models.

2.5 Discussion

2.5.1 Limitations and further work

While the batting career trajectory model presented in this chapter attempts to account for

temporal variation in ability that may exist on both short-term and long-term scales, due to a

range of variables, it is worth acknowledging that a number of important variables have ignored.

In regards to the getting your eye in process, variables such as balls faced or minutes batted

may provide further information, in addition to runs scored.

Of particular note is the fact that opposition strength has been ignored. During the model

development phase, it was difficult to establish a means of incorporating the quality of bowlers

faced for each innings, without having a prior estimate for each player’s bowling ability. Therefore,

the assumption was made to treat all runs scored equally. As the data suggest there is far

more variation in the abilities of batsmen bowled to for bowlers, compared with the variation

in abilities of bowlers faced for batsmen, an adjustment for opposition strength was prioritised

for the model that measures the career trajectories of bowlers, which is detailed in Chapter 3.

However, including a measure of the strength of bowlers faced in each innings may improve the

predictive capabilities of the batting career trajectory model. In the future, it may be possible

to account for the strengths of bowlers faced during each batting innings, by taking the results

and findings discussed in Chapter 3 and making post-hoc adjustments to the data that is fed

into the model that evaluates batting career trajectories.

A worthwhile consideration in regards to the innings effect, φ, is whether the team batting

in the first innings of a match has won the toss and chosen to do so, or whether the opposing

team has sent them in to bat. Including such a variable may provide additional context when
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considering a player performance in their team’s first innings of a match. In relation to the venue

effect, ψ, it may be of value to group venues that tend to present similar batting conditions. For

example, pitches in sub-continental countries, such as India, Bangladesh and Sri Lanka, tend to

be analogous, while conditions in countries such as England and New Zealand are often observed

to be alike. Treating the venue variable, vt, on a geographical basis, rather than purely as home,

away or neutral, may improve the accuracy of model prediction

Finally, while the hierarchical analysis across all players provides a general idea of the

abilities of the average Test batsman, it is worth acknowledging some weaknesses of this two-

stage approach, whereby all players are first analysed separately, then combining the output to

summarise player performance across a wider group. Traditional hierarchical modelling would

perform the individual inference by sharing information between players, allowing for the career

trajectories of players with less available data to be informed by the data of other players.

However, incorporating the data of all players in the ESPNcricinfo data set when analysing the

careers of individual players would only increase the amount of processing required in an already

computationally expensive process. Approaches exist that aim to improve efficiency in this regard

— such as variational Bayesian methods — and computationally would be likely outperform

the current nested sampling implementation. However, variational methods require a carefully

designed family of target distributions used in the estimation of the posterior and can give poor

results if these distributions are not well calibrated to the problem at hand. Conversely, MCMC

provides accurate results if enough computing power is invested, but can be time inefficient.

The present two-stage hierarchical approach, while somewhat computationally costly, is not so

costly as to be impossible and provides a reasonable estimate of the abilities of a typical Test

batsman. Developing a variational method that accurately approximates the posterior would

likely provide a significant improvement on the computationally expensive nature of the current

method, which is one of its limiting factors.

2.5.2 Concluding remarks

This chapter has proposed a novel method of measuring and predicting the past, present, and

future batting abilities of individual players in Test match cricket. The results support a number

of assumptions generally made about the batting performances of Test match cricketers: that the

majority of players tend to score more runs when batting in their home country, in their team’s

first innings of a match (Figure 2.12). Additionally, there is evidence to support the idea that

batting ability does not remain constant throughout a playing career, especially for those who

have spent a number of years on the international circuit. Instead, batting ability appears to vary

over time. For some players, this variation in ability exists on a shorter timescale as a result of

recent performances. However, it is more common that this variation can be observed gradually,
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over the long-term, likely as a result of players gaining experience in a variety of match conditions

around the world and being exposed to a range of world-class bowling attacks. In any case, the

results indicate that it may be worthwhile considering the effects of form on an individual basis,

with the abilities of some players more heavily influenced by recent performances than others.

In addition to supporting the concept of getting your eye in discussed in Stevenson & Brewer

(2017), a number of players also exhibit behaviour typical of the concept of finding your feet,

taking a number of innings to begin performing to the best of their abilities. A caveat to the

idea of finding your feet may be applied to older players making their international debuts in

the twilight of their careers, who already have a vast amount of domestic experience, with the

results suggesting that there may be some correlation between a player’s age and the speed at

which they adjust to the demands of international cricket. While it is not always practical to

provide every batsman with ample opportunity to prove themselves at the Test level, the results

suggest that it may be beneficial to give younger players a few extra chances to showcase their

talent. This recommendation is far from game-changing; one can assume such advice is already

inherently followed by many coaches and selectors, given the clear advantages of unearthing

a young superstar, as opposed to an aging one. However, it is always pleasing to have some

statistical evidence to support the theory behind such decisions.

Although the predictions for batting ability can be associated with a reasonable amount of

uncertainty as a result of the large amount of noise exhibited in many players’ career data, the

proposed model is shown to outperform a number of simple methods that are still routinely used

to gauge player ability (Table 2.11), including the career batting average. Of practical interest

is the result suggesting that estimating a player’s current ability and future scores using only

recent performances, is generally one of the least reliable methods. Often, both selectors and

fans of the game will cite a player’s recent form when it comes to justifying a new selection, or

dropping an incumbent. These findings would suggest that doing so is inadvisable and may be a

textbook case of falling for recency bias. Instead, dropping and selecting players on the basis of

recent form may only be advisable if the players in question have shown a consistent tendency

to string together numerous strong or poor performances in a row over the course of their career,

which can be observed via their career trajectory and the posterior distributions for ` and γ.

The results have also been compared with more established means of measuring and ranking

player ability, such as the ICC rating system. There is a reasonable amount of consensus between

the two methods, however, by providing an intuitive cricketing interpretation of past, present, and

future ability in units of a batting average, rather than arbitrary rating points, the model output

can be easily understood by all followers of the game. This enables the differences in batting

abilities between players to be quantified in more real terms, which allows for the results to be

utilised by a wider audience. Moreover, as the model has been constructed within a Bayesian
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framework, it is simple to compare players and quantify differences in ability through the use

of probabilistic statements, providing deeper insights pertaining to the risks and rewards of

selecting one player over another. Consequently, the results may have have practical implications

in high performance areas, such as talent identification and team selection policy.



Chapter 3

Estimating bowling career trajectories

3.1 Introduction

Bowling performances are typically measured in a similar manner to batting performances,

using the bowling average: a metric defining the average number of runs a bowler concedes per

wicket taken in their career (Equation 1.2). As with batting, bowling performances are typically

summarised on an innings-by-innings basis. However, bowling performances are generally more

difficult to objectively assess than batting performances, as more than one variable must be

considered. Both the number of wickets taken and number of runs conceded are important

factors when summarising a bowler’s contribution during an innings. Consequently, there is no

standardised means of visualising a player’s career bowling performances, as there is for batting.

The average number of runs conceded per over (economy rate) can also be worth considering,

although this is far more important in one-day and T20 matches, where the batting side has a

limited number of overs to score from.

As with the batting average, the same limitations that are discussed in Section 1.3.4 exist

for the bowling average and its proposed alternatives, including the ICC ratings system. These

are primarily (1) a lack of a clear cricketing interpretation; and (2) an inability to measure

changes in ability that occur between individual innings and matches, as a result of players

gaining experience and changes in player fitness and technique. There is far less discussion in

regards to short-term variation in ability due to a getting your eye in effect for bowlers and

as such, little research has been done in this area. As bowling is generally a more physically

demanding task than batting (particularly pace bowling), it is entirely plausible, if not likely,

that a bowler’s underlying ability will deteriorate over the course of an innings, due to fatigue.

It is a rare and highly impressive feat to see a non-spin bowler bowl for an entire session of play,

which corresponds to a player bowling roughly up to 15 consecutive overs. On the contrary,

multiple batsmen will often bat for consecutive sessions during a single match.

73
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Given the difficulty of incorporating all available information, far fewer methods have been

developed for assessing bowling performances, in comparison to the analysis of batting. Lemmer

(2002) proposed the combined bowling rate (CBR) as an alternative to the bowling average for

limited overs cricket. This metric combines the bowling average, economy rate, and strike rate

in the evaluation of a bowling performance, rewarding not only the number of wickets taken,

but also the rate at which both wickets are taken and runs are conceded. The CBR was further

developed to apply to first-class and Test match cricket in Lemmer (2006) and included an

adjustment to account for recent performances and the consistency of a bowler. However, the

CBR ultimately lacks a meaningful interpretation, limiting its usage to the ranking and ordering

of player performances.

Many of the potential reasons that players may exhibit variation in batting ability, which are

discussed in Chapter 2, can also be applied to bowling and must be considered in the development

of any proposed alternative to the bowling average. Similar innings and venue-specific effects

are likely to be observed, as well as variations in ability that occur over the course of a playing

career as a result of recent performances, experience, fitness, and improvements or deteriorations

in technique. However, the difficulty in assessing the value of specific bowling performances is

further compounded by the fact there can be a significant amount of variation in the abilities of

batsmen bowled to.

When evaluating batting performances in Chapter 2, it is presumed that all runs scored

by batsmen are equal. Of course, some teams will have stronger bowling attacks than others

and this assumption has several limitations. However, as not every player is required to bowl,

the variation in ability between a team’s best and worst bowler in an innings is far smaller

than the difference in ability between a team’s best and worst batsman. Therefore, it is far

more reasonable to treat runs scored by batsmen in a uniform manner than it is to make the

assumption that all wickets taken by bowlers are equal. Two bowlers may have identical bowling

figures in an innings, but context will determine who was the more valuable bowler. For example,

multiple bowlers may have innings figures of 3/80 (read as three wickets for 80 runs conceded);

if bowling to top-order batsmen, such a performance would usually be considered as highly

valuable to the bowling team’s effort, however, if a bowler took three wickets at the expense of

80 runs while bowling to the opposition’s numbers 9, 10 and 11 batsmen, this would be seen as

a rather costly performance.

Furthermore, the extent and timing of long-term variations in bowling ability may depend on

the type of bowler in question, with bowlers broadly classified into one of two categories, each

with multiple sub-categories. Firstly, there are pace bowlers, who aim to bowl the ball quickly,

giving batsmen as little time as possible to react in order to induce a false shot. Pace bowlers

who consistently bowl in excess of 140-145 km/h are often simply referred to as fast bowlers
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and use speed as their primary asset against opposition batsmen. Those with a slower average

speed are often classified as fast-medium or medium bowlers, and often use a combination of

speed and swing through the air to outfox their opponent. Pace bowling is considered the most

physically demanding discipline in cricket and tends to result in the largest number of injuries.

As such, pace bowlers do not usually have the same longevity as batsmen and will often peak in

terms of speed earlier in their careers, when their bodies are at their physical peak — usually in

their mid to late twenties.

Secondly, there are spin bowlers, who are much slower than pace bowlers, generally bowling

at speeds below 100 km/h. As the name suggests, spin bowlers aim to generate movement off

the pitch by imparting spin on the ball, which can be tricky to play, especially in conditions

that promote significant deviation from a delivery’s initial trajectory. Similar to pace bowlers

employing the use of swing, spin bowlers aim to deceive the batsmen through the air through

the use of flight, which is achieved by varying the pace and trajectory of individual deliveries. In

terms of physicality, spin bowling is far less demanding than pace bowling. Instead, spin bowling

is often referred to as one of the finer arts of cricket and is often associated with mind games

and out-thinking the batsman, rather than using raw pace to gain the upper hand. As a result,

spin bowlers can take longer to hone their craft, potentially peaking later in their careers and

continuing to enjoy success well into their thirties.

In this chapter, the batting career trajectory model from Chapter 2 is extended to apply

to the analysis of bowling performances. Before deriving the model, a means of visualising

bowling performances is proposed and used throughout the chapter (Section 3.2.1). A method of

adjusting raw bowling data to account for the quality of batsmen bowled to is then discussed in

Section 3.2.2. The model likelihood and relevant parameters are specified in Section 3.3 before

being fitted to the aforementioned adjusted data. The model output allows for construction

of bowling career trajectories, allowing for the estimation of past, present, and future bowling

abilities, including appropriate adjustments to account for the historic strength of batsmen

that individual players have bowled to over their careers. The general findings are presented in

Section 3.4 with player rankings compared with the ICC ratings method in Section 3.4.4. The

validity of the model’s fit and predictions of future performance are then assessed in Section 3.5.

3.2 Bowling data

3.2.1 Visualising bowling performances

As discussed in Section 3.1, bowling performances are typically presented on a per-innings basis

and quantify two major variables: (1) the number of wickets taken, and (2) the number of runs
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conceded. To illustrate how a player’s career bowling data are commonly recorded, the recent

bowling performances for New Zealand pace bowler Neil Wagner are presented in Table 3.1.

Here, it is possible to see the number of wickets taken and runs conceded in each innings, as

well as the innings and venue-specific information for each performance. While the data can be

readily understood when presented in table format, it is difficult to visualise multiple bowling

performances over time, as this would require the data to be plotted in three dimensions: time,

wickets taken, and runs conceded.

Table 3.1. A summary of Neil Wagner’s innings-by-innings bowling performances in his three
most recent Test matches.

Performance Runs Team

index Overs Balls conceded Wickets Innings innings Venue Opposition Ground

85 38 0 83 4 1 1 -1 Australia Melbourne

86 17 2 50 3 3 -1 -1 Australia Melbourne

87 33 1 66 3 1 1 -1 Australia Sydney

88 9 0 37 0 3 -1 -1 Australia Sydney

89 10 0 29 1 1 1 1 India Christchurch

90 8 0 18 1 3 -1 1 India Christchurch

Therefore, rather than considering bowling performances innings-by-innings, it may be

advantageous to consider an individual performance as the number of runs conceded before a

wicket is taken. As the Cricsheet data set discussed in Section 1.4.1 includes ball-by-ball data

for almost all Test matches since 2008, the computation of runs conceded between each wicket is

relatively straightforward. Rather than summarising Wagner’s first innings performance against

Australia in Melbourne as 4/83, this performance can be split into 4 distinct observations,

where Wagner conceded 8, 36, 26 and 9 runs respectively, between each wicket. However, astute

readers will note that the above four observations sum up to 79 runs conceded, rather than

83 as expected. This is a result of Wagner conceding an additional 4 runs, between taking his

fourth wicket and the end of the opposition’s batting innings. In this sense, the additional 4 runs

conceded can be treated as a supplementary fifth observation, making note that this performance

has no wicket associated with it, similar to how not out innings are treated in the context of

batting. Under this framework, each observation is referred to as a bowling spell, allowing the

same data from Table 3.1, to be presented as in Table 3.2.

As with the bowling data summarised innings-by-innings, each observed bowling spell in

Table 3.2 includes the number of runs conceded as well as the relevant innings and venue-specific

information. Similar to the batting data, the not out dummy variable indicates whether the

observation corresponds to a wicket-taking spell (a value of 0), or a non wicket-taking spell

(a value of 1). In this format, an individual’s performances can be visualised over time, as is
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Table 3.2. A summary of Neil Wagner’s spell-by-spell bowling performances in his three most
recent Test matches.

Spell Runs Team Batsman Wicket

index Overs Balls conceded Not out Innings innings Venue dismissed type Opposition Ground

262 3 2 8 0 1 1 -1 DA Warner caught Australia Melbourne

263 22 2 36 0 1 1 -1 SPD Smith caught Australia Melbourne

264 8 3 26 0 1 1 -1 TD Paine lbw Australia Melbourne

265 2 1 9 0 1 1 -1 TM Head caught Australia Melbourne

266 1 4 4 1 1 1 -1 Australia Melbourne

267 4 1 19 0 3 -1 -1 DA Warner caught Australia Melbourne

268 3 3 11 0 3 -1 -1 SPD Smith caught Australia Melbourne

269 9 4 20 0 3 -1 -1 TM Head bowled Australia Melbourne

270 6 3 12 0 1 1 -1 DA Warner caught Australia Sydney

271 23 1 47 0 1 1 -1 JL Pattinson bowled Australia Sydney

272 3 3 7 0 1 1 -1 MA Starc bowled Australia Sydney

273 9 0 37 1 3 -1 -1 Australia Sydney

274 9 4 29 0 1 1 1 GH Vihari caught India Christchurch

275 0 2 0 1 1 1 1 India Christchurch

276 5 3 7 0 3 -1 1 AM Rahane bowled India Christchurch

277 2 3 11 1 3 -1 1 India Christchurch

illustrated in Figure 3.1 with Neil Wagner’s Test match bowling data.

3.2.2 Incorporating batsman-specific information

While the data presented in Table 3.2 does allow for the visualisation of performances over time,

it still ignores the essential consideration in the context of bowling performances discussed in

Section 3.1: the abilities of batsmen bowled to during each observation. To do so requires an

estimate of the batting abilities of each batsman bowled to, over the course of each bowling spell.

Fortunately, this is exactly what the batting career trajectory model presented in Chapter 2

attempts to measure.

The standardised bowling average

Recall the effective batting average function, µ(x, t) (Equation 2.9), which estimates a batsman’s

batting ability on score x, in their tth career innings, in units of a batting average. The

computation of µ(x, t) for an individual player, across all values of x and t, allows for the

estimation of that player’s underlying batting ability, for any ball faced during any innings of

their career. It is possible to then append these estimates for batting ability, µ(x, t), to the

Cricsheet ball-by-ball Test data set to provide an indication of batsman quality for every single

delivery. Once an estimate for batsman ability exists for all balls bowled, it is possible to make

adjustments for the quality of batsmen bowled to, during each bowling spell.
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Figure 3.1. Spell-by-spell bowling data for Neil Wagner in Test matches. Wagner’s 72nd and
255th spells are highlighted in orange for comparison with Figure 3.2.

This is achieved by introducing a new quantity, standardised runs conceded, denoted st, which

represents the number of runs conceded during a bowler’s tth bowling spell, as a proportion

of opposition batting ability, µ(x, t). For each ball bowled, the number of standardised runs

conceded can be computed using Equation 3.1, noting that the estimate for µ(x, t) is the

point estimate computed from the posterior predictive distribution. Taking the summation of

standardised runs conceded during a bowling spell provides an estimate for st, allowing for a

more direct means of comparing bowling spells, as the number of standardised runs conceded by

a bowler accounts for the quality of batsmen bowled to.

Standardised runs conceded =
Runs conceded

µ(x, t)
(3.1)

For example, consider a batsman with an underlying batting ability estimate of µ(x, t) = 40.0.

If this batsman scored a boundary (four runs) from a single delivery, this would be counted as

conceding 4
40.0

= 0.1 standardised runs. However, for a different batsman who has an underlying
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estimate of µ(x, t) = 10.0, scoring a boundary would be counted as conceding 4
10.0

= 0.4

standardised runs. The batsman in the former example is estimated to have an underlying

batting ability that is four times greater than the batsman in the latter example, which is

reflected accordingly in the number of standardised runs conceded. Therefore, if a bowler were

to concede a total of 0.5 standardised runs over the course of a bowling spell, before taking

a wicket, one can assume the batsman bowled to scored a number of runs equivalent to half

their estimated effective batting average, before being dismissed. Likewise, if a total of 2.0

standardised runs were conceded by a bowler before taking a wicket, one can assume the batsmen

scored approximately twice as many runs as expected per their effective batting average, before

being dismissed.

An example of the standardised Test match bowling data for Neil Wagner, which includes

estimates for st, is presented in Table 3.3. Similar to Figure 3.1, the spell-by-spell standardised

bowling data is presented in Figure 3.2 and provides a visualisation of performance over time,

while also accounting for the strengths of batsmen bowled to, allowing for a more direct means

of comparison between individual bowling spells.

Table 3.3. A summary of Neil Wagner’s spell-by-spell bowling performances in his three most
recent Test matches, including estimates for the number of standardised runs conceded, st.

Spell Runs Standardised Team Batsman Wicket

index Overs Balls conceded runs conceded Not out Innings innings Venue dismissed type Opposition Ground

262 3 2 8 0.10 0 1 1 -1 DA Warner caught Australia Melbourne

263 22 2 36 0.65 0 1 1 -1 SPD Smith caught Australia Melbourne

264 8 3 26 0.63 0 1 1 -1 TD Paine lbw Australia Melbourne

265 2 1 9 0.23 0 1 1 -1 TM Head caught Australia Melbourne

266 1 4 4 0.17 1 1 1 -1 Australia Melbourne

267 4 1 19 0.40 0 3 -1 -1 DA Warner caught Australia Melbourne

268 3 3 11 0.25 0 3 -1 -1 SPD Smith caught Australia Melbourne

269 9 4 20 0.50 0 3 -1 -1 TM Head bowled Australia Melbourne

270 6 3 12 0.20 0 1 1 -1 DA Warner caught Australia Sydney

271 23 1 47 0.89 0 1 1 -1 JL Pattinson bowled Australia Sydney

272 3 3 7 0.26 0 1 1 -1 MA Starc bowled Australia Sydney

273 9 0 37 0.64 1 3 -1 -1 Australia Sydney

274 9 4 29 0.69 0 1 1 1 GH Vihari caught India Christchurch

275 0 2 0 0.00 1 1 1 1 India Christchurch

276 5 3 7 0.20 0 3 -1 1 AM Rahane bowled India Christchurch

277 2 3 11 0.41 1 3 -1 1 India Christchurch

Several interesting features of the standardised data presented in Figure 3.2 stand out

immediately, in comparison to the data that measures each bowling spell in terms of raw runs

conceded. Firstly, as observed in Figure 3.1, Wagner’s most expensive performance was his

21st career spell, where he conceded 112 runs before taking a wicket. However, after adjusting

for the strength of the opposition batsmen, it appears Wagner’s most expensive performance

was his 190th spell, where he conceded 3.04 standardised runs (90 runs), compared with 2.89

standardised runs (112 runs) in his 21st career spell.
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Figure 3.2. Spell-by-spell bowling data for Neil Wagner in Test matches, in units of standardised
runs conceded. Wagner’s 72nd and 255th spells are highlighted in orange.

Secondly, useful insights can be deduced by comparing bowling performances that appear

similar in Figure 3.1, but very different in Figure 3.2. For example, in his 72nd and 255th career

bowling spells, Wagner conceded 23 and 26 runs respectively — two objectively similar-looking

performances. After adjusting for batsman ability, these performances correspond to Wagner

conceding 1.10 and 0.32 standardised runs respectively, suggesting in relative terms, his 72nd

spell was almost four times more expensive than his 255th. Upon closer inspection, it appears as

though Wagner conceded a number of runs to India’s lower order in his 72nd spell before taking

a wicket, while in his 255th spell Wagner’s main opponent was Australian Steve Smith, who in

Chapter 2 was identified as one of the best batsmen in the world over the last several years. To

illustrate the magnitude of this difference, Wagner’s 72nd and 255th spells are highlighted in

orange in Figure 3.2.

Finally, like the traditional career bowling average, it is possible to compute a standardised

career bowling average, via Equation 3.2. This quantity represents the number of runs a bowler

concedes per wicket, on average, as a proportion of a batsman’s underlying batting ability,
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µ(x, t), which is expressed in units of a batting average.

Standardised bowling average =

∑
Standardised runs conceded∑

Wickets taken
(3.2)

Using Equation 3.2, it is possible to compute Neil Wagner’s standardised career bowling

average of 0.78, which is included in Figure 3.2. This value indicates that on average, Wagner

concedes runs equivalent to 78% of a batsman’s estimated underlying effective batting average,

µ(x, t), for every wicket taken.

In order to gain a deeper understanding of the relationship between runs and standardised

runs, it is worth taking a look at the summary statistics of the original data, and the data after

it has been adjusted to account for the estimated abilities of batsmen bowled to. Table 3.4

summarises the batting and bowling data obtained from the ball-by-ball Cricsheet data source.

It is worth noting that extra runs, such as wides and no balls are counted as runs conceded

by bowlers, but are not counted as runs scored by batsmen. In the case of these extra runs,

the number of standardised runs conceded is calculated based on the estimate for the effective

batting average, µ(x, t), of the batsman who was on strike.

Table 3.4. Summary of batting and bowling data across all 532 Test matches in the Cricsheet
data source. Summaries for the data split by both innings and venue are also provided.

Team innings Venue

Quantity Overall 1st innings 2nd innings Home Away Neutral

Runs scored 534,906 339,412 195,494 271,943 259,717 3,246

Standardised runs scored 14,979.7 9,013.2 5,966.5 7,093.0 7,776.5 110.2

Runs conceded 543,468 344,949 198,519 263,704 276,455 3,309

Standardised runs conceded 15,274.7 9,196.2 6,078.5 7,922.5 7,239.7 112.5

Bowler-credited wickets 16,512 9,769 6,743 8,760 7,615 137

Non bowler-credited wickets 458 265 193 234 220 4

Batting average 31.5 33.8 28.2 34.7 28.9 23.0

Standardised batting average 0.88 0.90 0.86 0.91 0.86 0.78

Bowling average 32.9 35.3 29.4 30.1 36.3 24.2

Standardised bowling average 0.93 0.94 0.90 0.90 0.95 0.82

The results from Table 3.4 indicate that the overall bowling average across all Test matches

in the Cricsheet data is 32.9. This is slightly higher than the overall batting average of 31.5, as

a result of extras conceded, as well as wickets such as run outs, not being credited to bowlers.

These batting and bowling averages correspond to overall standardised batting and bowling

averages of 0.88 and 0.93. Intuitively, one might expect the overall standardised bowling average



82 3.2. Bowling data

to be value equal to, or very close to 1.0. However, as the estimates for batting ability, µ(x, t),

correctly reward batsmen for remaining on not out scores, the estimates for a player’s underlying

batting ability tend to be slightly larger than their overall career average. Consequently, the

overall standardised bowling average is slightly less than 1.0. With this in mind, it is possible

to say that a player with a standardised bowling average less than 0.93 is better than average,

while a player with a standardised bowling average greater than 0.93 is worse than average.

It is important to clarify that when computing the standardised bowling data presented

in Table 3.4, the innings and venue-specific strengths and weaknesses of batsmen have been

accounted for. Therefore, any difference in standardised bowling averages observed between

innings or across difference venues, is the result of any residual effect of bowling in the first or

second innings, or at a home or away venue, after adjusting for batting ability. For example, the

raw bowling averages at home and away venues are 30.1 and 36.3 respectively, corresponding to

an approximate 20% difference in the average number of runs conceded per wicket. However,

the equivalent standardised bowling averages are 0.90 and 0.95, a difference of roughly 5%.

That is to say, once the respective innings and venue-specific abilities of batsmen are taken into

account, there is a residual unexplained 5% difference in standardised runs conceded per wicket

by players bowling at home and away venues, which may be a result of bowler familiarity with

local conditions or an effect due to playing in front of a supportive home crowd.

The career bowling averages and standardised bowling averages of all players in the Cricsheet

data, who have taken at least 10 career wickets, are presented in Figure 3.3. As expected, there

is a clear positive correlation between the two quantities, with the association becoming stronger

as the total number of wickets a player has taken increases. This result is unsurprising; the law

of large numbers would suggest that the overall quality of batsman bowled to over a player’s

career will converge to the average batsman, the more a player has bowled. However, for players

with the same, or similar career bowling averages, there is still a meaningful amount of variation

in standardised bowling averages, which provides further evidence that batsman quality is an

important variable to consider when it comes to analysing bowling performances.

The adjusted bowling average

Although the standardised bowling average adjusts for the quality of opposition batsmen bowled

to, it is a quantity that is unlikely to be readily understood by many of those within the cricketing

community. This violates the essential criterion of interpretability that was identified in Section

1.2. Therefore, it is advisable to make a modification to the standardised bowling average to

allow for a more meaningful and intuitive interpretation. This is achieved by introducing the

adjusted bowling average, which represents a player’s expected bowling average if they were to

bowl to the average Test batsman.
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Figure 3.3. Career bowling averages plotted against standardised career bowling averages for
all players in the Cricsheet data set who have taken 10 or more wickets. The size of each point
is representative of the total number of wickets taken by the player.

In order to convert a player’s standardised bowling average into an adjusted bowling average,

an estimate for the batting ability of the average Test batsman must be computed. As the

effective batting average, µ(x, t), expresses batting ability in units of a batting average, this

quantity can be estimated easily be computing the mean effective batting average, denoted ν̄,

across all Test matches, via Equation 3.3.

ν̄ =

∑
Runs conceded∑

Standardised runs conceded
(3.3)

Using the quantities in Table 3.4, the average Test batsman has an estimated effective average

ν̄ = 543468
15274.7

≈ 35.6. It is then possible to obtain a player’s adjusted career bowling average by

multiplying their standardised career bowling average (Equation 3.2), by the the estimate for ν̄,
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as per Equation 3.4.

Adjusted bowling average = Standardised bowling average× ν̄ (3.4)

Returning briefly to the bowling career of Neil Wagner to provide a practical example, it is

possible to compute his adjusted career bowling average as: 0.78× ν̄ = 27.6. That is to say, if

Wagner were to bowl to the average Test batsman, he would be expected to concede an average

of 27.6 runs per wicket, over the course of his career. This is slightly higher than his career

bowling average of 26.6. Therefore, one can infer that Wagner has bowled to slightly below

average batsmen during his career.

It is possible to obtain an estimate for the average ability of batsmen bowled to during a

particular player’s career, by only including that player’s bowling career data in the computation

of ν̄ in Equation 3.3. For Wagner, ν̄Wagner = 34.3, confirming the suspicion above, that the

average batting ability of batsmen Wagner has conceded runs to over the course of his Test career,

is slightly lower than the average Test batting ability, ν̄. The computation of ν̄ for individual

players can be useful for comparing the relative strength of batsmen bowled to between players

and indicates which players are going to see significant differences between their career bowling

average and adjusted bowling average.

Table 3.5. Career bowling averages, standardised career bowling averages, and adjusted career
bowling averages for the current top 10 Test bowlers, as per the ICC ratings. An estimate for
the average ability of batsmen bowled to, ν̄player, is also provided for each player.

Career Standardised Adjusted ICC

Rank Player Wickets bowling average bowling average bowling average ν̄player rating

1. P. Cummins (AUS) 143 21.8 0.68 24.3 32.0 904

2. S. Broad (ENG) 513 27.5 0.84 29.9 32.7 845

3. N. Wagner (NZ) 206 26.6 0.78 27.6 34.3 843

4. T. Southee (NZ) 284 29.0 0.85 30.2 34.1 812

5. J. Holder (WI) 111 27.5 0.77 27.6 36.5 810

6. K. Rabada (SA) 197 22.9 0.70 25.0 32.6 802

7. M. Starc (AUS) 244 27.0 0.82 29.1 32.9 797

7. J. Anderson1 (ENG) 538 25.4 0.74 26.5 34.1 781

8. J. Bumrah (IND) 68 20.3 0.65 23.0 31.4 779

10. T. Boult (NZ) 267 27.6 0.81 28.7 34.3 770

Thinking in terms of adjusted bowling averages allows for the direct comparison of players,

as the historic strength of batsmen bowled to has been accounted for. For example, the career

bowling averages and adjusted averages for the current top 10 Test bowlers, as ranked by the

1James Anderson’s Test career began prior to 2008. Consequently, the Cricsheet data source does not contain
bowling data for all 600 of his Test match wickets
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ICC, are presented in Table 3.5. Interestingly, all of the 10 of the current top Test bowlers are

pace bowlers, who frequently open the bowling. In every innings, opening bowlers are given the

opportunity to bowl at two opening batsmen who are yet to get their eye in. That is to say,

opening bowlers will always have a chance at bowling against two batsmen whose estimates of

batting ability at the start of an innings, µ(0, t), are typically lower than of the average Test

batting ability, ν̄. Consequently, adjusted bowling averages for all of the top 10 bowlers are

larger than their career bowling averages, as the average ability of batsmen bowled to, is lower

than that of the average Test batting ability. This is reflected in the individual estimates for ν̄,

for each player. The player whose career bowling average and adjusted bowling averages are

most similar is West Indian Jason Holder. When considering the context of Holder’s role in the

West Indian side, this result is unsurprising; Holder has split his time between being an opening

bowler and a first-change bowler, with the latter not guaranteed the opportunity of bowling at

two batsmen yet to get their eye in.

3.3 Model specification

3.3.1 Model likelihood

The derivation of the model likelihood in the context of bowling is closely related to the likelihood

used in the analysis of batting performances in Chapter 2, derived in Stevenson & Brewer (2017,

2018, 2021). As discussed in Section 3.2.2, during a single bowling spell a player bowls and

continues to concede runs until: (1) a wicket is taken, (2) the opposition’s batting innings is

concluded, or (3) the match is concluded. Let R ∈ {0, 1, 2, 3, ...}, denote the number of runs

conceded in a given bowling spell. If p ∈ [0, 1] defines the probability of a bowler taking a wicket

without conceding any more runs in a given bowling spell, and bowling ability is assumed to be

constant during a single bowling spell, then the probability mass function for R in Equation 3.5

can be expressed as a geometric distribution.

P (R = r) = p (1− p)r (3.5)

However, in order to account for the strength of opposition batsmen bowled to during a given

spell, bowling performances are measured in units of standardised runs conceded, as opposed to

runs conceded. As a result, the data in question are continuous, rather than discrete. When

moving from a discrete to a continuous response, a natural conversion is to move from a geometric

distribution to an exponential distribution. Therefore, let S ∈ R≥0, represent the number of

standardised runs conceded in a given bowling spell. By introducing the standardised effective

bowling average function, ω(t) ∈ R≥0, which defines a player’s underlying bowling ability during
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their tth career bowling spell, in units of a standardised bowling average, it is possible to express

the exponential probability density function for S, as per Equation 3.6.

fS(s) =
1

ω(t)
exp

(
−s
ω(t)

)
(3.6)

Under this specification, S has expectation: E[St] = ω(t), and variance: Var(St) = ω(t)2. For

any value of s, Equation 3.6 defines the probability of a bowler taking a wicket, without conceding

any further runs and defines the likelihood function for a single bowling spell. However, as with

not out scores in the batting model, there are a number of non wicket-taking observations, where

a bowler’s spell ends without a wicket being taken. In such cases, the likelihood is computed as

P (S ≥ s), which assumes the bowler would have conceded a further number of standardised runs

before taking a wicket, although this observation is not truly observed. Equation 3.7 defines

P (S ≥ s), which is initially expressed as 1 − P (S ≤ s) and is equivalent to 1 − FS(s), where

FS(s) represents the cumulative density function for S.

P (S ≥ s) = 1− P (S ≤ s)

P (S ≥ s) = 1− FS(s)

P (S ≥ s) = 1−
(

1− exp

(
−s
ω(t)

))
P (S ≥ s) = exp

(
−s
ω(t)

) (3.7)

Therefore, if T is the total number of bowling spells in a player’s career record, and N is

the number of non wicket-taking spells, then the probability density of a set of conditionally

independent wicket-taking observations, x = {x1, x2, ..., xT−N}, and not out wicket-taking

observations, y = {y1, y2, ..., yN}, can be expressed as

fS ({x,y}) =
T−N∏
t=1

1

ω(t)
exp

(
−xt
ω(t)

)
×

N∏
t=1

exp

(
−yt
ω(t)

)
. (3.8)

For a set of known data, {x,y}, Equation 3.8 defines the likelihood function for any proposed

value for ω(t). Therefore, conditional on the set of parameters, θ, defining the functional form

of the standardised effective bowling average, ω(t;θ), it is possible to derive the log-likelihood

function, `(θ), from Equation 3.9.

`(θ) = −

(
T−N∑
t=1

log
[
ω(t)

]
− xt
ω(t)

)
−

N∑
t=1

yt
ω(t)

(3.9)
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The equations in Section 3.3.1 assume that bowling ability is constant during any given

bowling spell, as there is little evidence — both anecdotal and empirical — to suggest that an

effect similar to the concept of getting your eye in exists when it comes to analysing bowling

performances. However, depending on the parameterisation of ω(t), bowling ability is free to

vary over time, between spells and across a playing career, as discussed in Section 3.3.2.

3.3.2 Parameterising the effective bowling average function

Individual-specific effects

Conceptually, the standardised effective bowling average, ω(t), can be thought of as the rate at

which a bowler will concede runs for every wicket taken, in their tth career bowling spell. In

order to parameterise ω(t) to allow for variation over time, a time-dependent parameter, wt, is

introduced. Here, wt represents a player’s underlying bowling ability in their tth career bowling

spell, in units of a standardised bowling average. While bowling performances do not exhibit

the same amount of variation as seen in batting performances, the concept of form is still a

worthwhile consideration on an individual level.

As with the batting career trajectory model, the time-dependent parameter used to measure

the effects of short and long-term form, wt, is modelled using a Gaussian process prior, with a

mean value, λ, and covariance function K(tj, tk), where t represents the index of a player’s jth

and kth career bowling spells (Rasmussen & Williams, 2006).

wt ∼ GP (λ,K(tj, tk)) (3.10)

Given the success of the Gaussian process used to model batting career trajectories in Chapter

2, the same γ-exponential covariance function — presented again in Equation 3.11 — is used in

the specification of the Gaussian process that governs the set of {wt} terms. The covariance

function has three parameters, {σ, `, γ}, and allows for both immediate, short-term changes in

wt, and more gradual, long-term changes in wt.

K(tj, tk) = σ2 exp

(
−|j − k|

γ

`γ

)
(3.11)

Innings and venue-specific effects

As with batting performances, innings and venue-specific effects are likely to exist when analysing

bowling performances, as bowlers tend to get more assistance from a pitch that has deteriorated

over several days and will generally prefer to bowl in familiar, home conditions. Several exceptions

to this assumption will exist, for example, in New Zealand, rather than deteriorating from the



88 3.3. Model specification

first ball, pitches can often be at their most difficult to bat on during day one, before flattening

out and being ideal for batting later in the match. Regarding venue, spin bowlers from countries

where conditions are not typically spin-friendly (such as England and New Zealand), may prefer

bowling in the sub-continent where pitches tend to be more favourable toward spin bowling.

Similarly, pace bowlers from the sub-continent may relish the opportunity to play overseas, where

there is often more pace and bounce to be exploited than in their local, home environment.

For each bowling spell, indicator variables it and vt, provide the innings and venue-specific

information, with φ and ψ representing the innings and venue-specific effects respectively.

it =

1, if batting team’s first innings of a match

−1, if batting team’s second innings of a match

vt =


1, if bowling at a home venue

0, if bowling at a neutral venue

−1, if bowling at an away venue

Therefore, the standardised effective bowling average function, ω(t), represents a player’s

underlying bowling ability in their tth career bowling spell, in units of a standardised bowling

average, conditional on whether the opposition is batting in their first or second innings and the

venue. The functional form for ω(t) is defined in Equation 3.12 as follows:

ω(t) = wt × φit × ψvt . (3.12)

As with the effective batting average, the posterior predictive estimate for ω(t) can be plotted

over time to provide a bowling career trajectory, illustrating how the model estimates underlying

bowling ability to have varied over the course of a player’s career. However, as noted in Section

3.2.2, the adjusted bowling average is a more intuitive quantity to interpret, compared with the

standardised bowling average. Therefore the adjusted effective bowling average function, α(t), is

introduced in Equation 3.13, allowing the model output to be presented and interpreted in units

of an adjusted bowling average.

α(t) = ω(t)× ν̄ (3.13)
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3.3.3 Prior distributions

The full set of model parameters, θ, defined in Section 3.3.2, are as follows:

θ = {φ, ψ, {wt}, λ, σ, `, γ}.

As a constant ability is assumed during each bowling spell, the model has fewer parameters

when analysing bowling performances, compared with the model in Chapter 2 used to analyse

batting performances. Each of the relevant quantities, parameters, and functions are provided

in Table 3.6, with prior distributions defined where necessary. Similar to the batting career

trajectory model, the prior distributions are generally informative, but conservative, reflecting a

general understanding of the distribution of bowling abilities of players in Test cricket.

Table 3.6. The bowling career trajectory model parameters, data, and effective average functions,
including the prior distribution for each quantity where relevant.

Quantity Interpretation Prior

Data

t Career bowling spell index (time)

ot Wicket-taking/non wicket-taking flag in tth career bowling spell

it Batting team innings # in tth career bowling spell

vt Venue in tth career bowling spell

st Standardised runs conceded in tth career bowling spell Likelihood function given in Equation 3.9

ν̄ Average Test match batting ability, in units of an effective Quantity computed via Equation 3.3

batting average

Innings and venue-specific effects

φ Team innings # effect log(φ) ∼ Normal(log(1), 0.252)

ψ Venue effect log(ψ) ∼ Normal(log(1), 0.252)

Gaussian process parameters

{wt} Underlying bowling ability in tth career bowling spell log({wt}) ∼ GP(λ,K(tj, tk;σ, `, γ)

λ Mean value of Gaussian process log(λ) ∼ Normal(log(1), 0.52)

σ Scale parameter of covariance function, K(tj, tk) log(σ) ∼ Normal(log(0.2), 12)

` Length parameter of covariance function, K(tj, tk) log(`) ∼ Normal(log(20), 12)

γ Smoothing parameter of covariance function, K(tj, tk) γ ∼ Uniform(1, 2)

Covariance and effective average functions

K(tj, tk) Covariance function for Gaussian process Functional form given in Equation 3.11

ω(t) Bowling ability in tth career bowling spell, in units of a Functional form given in Equation 3.12

standardised bowling average

α(t) Bowling ability in tth career bowling spell, in units of an Functional form given in Equation 3.13

adjusted bowling average

As discussed in Section 3.3.2, the prior for the set of {wt} terms is specified by a Gaussian

process, with an underlying mean, λ, and γ-exponential covariance function K(tj, tk;σ, `, γ).

However, bowling ability — regardless of whether it is measured in units of a bowling average,
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standardised bowling average or adjusted bowling average — must be positive. As such, it

is the set of log{wt} terms that are modelled by the Gaussian process prior, which are then

back-transformed accordingly to ensure positivity in the estimates.

The log-normal priors over the innings and venue-specific effects, φ and ψ, are centred on

one, implying the model assumes a player is equally capable at bowling at both home and away

venues, across all innings of a match, unless the data suggest otherwise. Likewise, the log-normal

prior for λ suggests that the median player will have a bowling ability, wt, close to a value of 1.0,

in units of a standardised bowling average. As seen from the summary data in Table 3.4, this is

a reasonable specification. The conservative log-normal priors for the parameters controlling the

flexibility of the Gaussian process prior, ` and γ, allow for a range of plausible career trajectories

to be fitted to the data.

The most restrictive prior is again the log-normal prior over σ, which assumes the median

player’s bowling ability will vary by approximately plus or minus 20% from their underlying

average bowling ability, λ, over the course of their career. A prior that entertains the possibility

of larger vales for σ can lead to proposed career trajectories that suggest a player’s underlying

bowling ability fluctuates between bowling spells in a manner that is entirely unrealistic in the

context of sporting ability.

3.3.4 Model fitting

Data

The model defined in Section 3.3 has been applied to all players for whom ball-by-ball bowling

data exists in the Cricsheet data set. This corresponds to a total of 522 players, from 12 different

countries, who have taken a total of 16,512 wickets, and have bowled in a combined total of

25,477 bowling spells.

The model is fitted to each player’s standardised career data, to ensure the historic strength

of opposition batsmen bowled to is accounted for. This enables the model output to then be

viewed in terms of a standardised bowling average, or, post-processed to be viewed in units of an

adjusted bowling average, which may be interpreted more easily by members of the cricketing

community. As seen in the career bowling data of Neil Wagner, presented in Figures 3.1 and 3.2,

there can be a reasonable amount of variation between observations, although perhaps less so

than the batting data presented in Chapter 2. Nevertheless, such statistical noise may make it

difficult for the model to distinguish between smooth career trajectory functions, which imply a

gradual change in bowling ability over the long-term, or more jagged career trajectories, implying

a bowler’s ability is more closely tied with recent performances.

As the model assumes a player’s underlying bowling ability is not heavily influenced by
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the current state of the match, the most appropriate application is in the analysis of bowling

performances in longer form cricket. In one-day, and particularly T20 matches, a batsman’s

aggressiveness and rate at which they attempt to score runs can fluctuate profoundly. Therefore,

when a wicket is taken in such situations it can be difficult to determine whether the wicket was

a result of quality bowling, or because of a poorly executed attacking shot from the batsman.

One could speculate that bowlers who are able to consistently elicit false shots from the batsman,

regardless of their aggressiveness, should be rewarded and there is merit to this argument.

However, in the closing stages of an opposing team’s batting innings (often referred to as the

death of an innings), batsmen are often trying to execute a strategy that maximises their team’s

final total, which is usually an approach that sees players attempt to hit the ball out of the

ground on the majority of deliveries. Such scenarios tend to result in a higher than average

proportion of attacking shots being played and consequently, a higher proportion of false shots.

This is not to say that all players are able to regularly take wickets at the death of an innings,

rather, it is more difficult to distinguish the abilities of bowlers from one another, compared

with Test match cricket, where batsmen are generally free to score at their own pace and have

minimal external pressure to do so. With this in mind, there is probably more merit in applying

the proposed bowling model to one-day and T20 cricket than there is for the batting model, but

for the sake of consistency, the results presented in Section 3.4 will focus solely on Test cricket.

Nested sampling

As discussed in Section 1.5.2, the bowling model is fitted using a C++ implementation of the

nested sampling algorithm proposed by Skilling (2006). The output of the nested sampling

algorithm provides posterior samples for each of the model parameters, as well as the marginal

likelihood, which is used for model comparison. The effective sample size (ESS) of each nested

sampling run is also computed using Shannon entropy (Shannon, 1948), to ensure the algorithm

has effectively explored the parameter space. The results reported in Section 3.4 for each player

are based on nested sampling runs initiated with 1,000 particles and use 1,000 MCMC steps per

nested sampling iteration. The results were not sensitive to these adjustable tuning parameters,

indicating the sampling was sufficient.

As with the batting career trajectory model, the run-time of the model in a bowling context

varies considerably, depending on the number of career bowling spells a player has bowled in,

which determines the number of parameters used to fit the model. Once again, the model fitting

process was implemented using parallel cloud computing via the high performance computing

facilities provided by the New Zealand eScience Infrastructure. This allows the model to be

fitted to the career bowling data of many players simultaneously, significantly improving the

computational efficiency of the process.
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3.4 Results

3.4.1 Analysis of individual bowlers

Of primary interest when evaluating the model output for an individual player is the posterior

predictive distribution for the effective bowling average functions, ω(t) and α(t), which allow for

the results to be interpreted in units of both a standardised bowling average, or an adjusted

bowling average. Plotting the effective bowling average over time, t, which in the context of

bowling is represented in terms of bowling spells, gives a player’s bowling career trajectory. This

provides an indication of a player’s past, present, and future bowling abilities, adjusted for the

relative strength of opposition batsmen bowled to. The bowling career trajectories of all 522

players analysed are available to view via the same RShiny application that hosts the batting

career trajectories at www.oliverstevenson.co.nz/phd cricket visualisation.
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Figure 3.4. Test match bowling career trajectory (the posterior median of ω(t)) for Neil Wagner,
in units of a standardised bowling average. The 95% credible interval is also provided (shaded
region). A prediction for the standardised effective bowling average, ω(t), is also provided for 50
bowling spells into the future (purple).
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Figure 3.5. Test match bowling career trajectory (the posterior median of α(t)) for Neil Wagner,
in units of an adjusted bowling average. The 95% credible interval is also provided (shaded
region). A prediction for the adjusted effective bowling average, α(t), is also provided for 50
bowling spells into the future (purple).

To demonstrate how individual player bowling career trajectories can be analysed, the bowling

career trajectory for Neil Wagner is presented in Figures 3.4 and 3.5. Figure 3.4 presents the

results in units of a standardised bowling average, while Figure 3.5 is presented in terms of

an adjusted bowling average. A significant difference between the batting and bowling career

trajectories, which is made apparent in Figures 3.4 and 3.5, is the estimated uncertainties of

the effective average, which are comparatively smaller for bowlers. This observation holds true

across the majority of players analysed, suggesting that after adjusting for the quality of batsmen

bowled to, underlying bowling ability tends to vary less during a career than batting ability. It

is also plausible that perhaps bowling is a more difficult skill to noticeably improve on in terms

of on-field results, when measuring performance purely on runs conceded and wickets taken.

An important feature of Wagner’s bowling career trajectory is the sustained improvement

observed since his Test debut, illustrated by the decreasing trend in the posterior predictive
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Figure 3.6. A subset of 1,000 posterior samples for α(t), the expected adjusted bowling average
given the parameters, for Neil Wagner. The purple lines represent predictions for α(t) for 50
bowling spells into the future. The posterior predictive estimate for α(t) is overlaid to illustrate
the moderate amount of uncertainty in the estimates.

estimate for his underlying bowling ability, represented by the red lines in Figures 3.4 and

3.5. The posterior predictive estimates for ω(t) and α(t) that include the innings and venue-

specific information for each performance, it and vt, are also provided (blue). As the posterior

distributions for ω(t) and α(t) are not always symmetric and can have heavy tails, the posterior

predictive estimates are computed as the posterior median, rather than the posterior mean.

To illustrate the range of plausible career trajectories that can be fitted to Wagner’s career

data, a subset of 1,000 posterior samples for α(t) are presented in Figure 3.6. The posterior

predictive estimate for α(t) is overlaid, again illustrating the gradual improvement seen in

Wagner’s bowling performances over time. Given the relatively noisy nature of the data,

plausible career trajectories include those that exhibit fluctuations in ability as a function of both

short and long-term form. Posterior summaries for each of the model parameters are provided

in Tables 3.7 and 3.8, and are discussed in more detail below.
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Individual-specific effects

The posterior distributions for the each of Gaussian process parameters, {λ, σ, `, γ}, which govern

the shape of Wagner’s career trajectory and the relative impact of short and long-term form, are

presented in Figure 3.7 and are summarised in Table 3.7. Given Wagner’s relative success in

Test matches to date, the data have been reasonably informative in regards to the mean value

parameter, λ, and therefore the set of underlying bowling spell abilities, {wt}. The 95% posterior

credible interval for λ does not include a value of 1, indicating there is evidence to suggest

Wagner is a bowler who is expected, on average, to concede fewer runs than an opposition

batsman’s effective batting average, µ(x, t), for each wicket taken.
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Figure 3.7. Posterior distributions for each of the Gaussian process parameters, λ, σ, ` and γ.
Red lines indicate the respective prior distributions. Note that λ is expressed here in units of
standardised runs. It appears as though Wagner’s data have a limited impact in modifying the
prior distributions for both ` and γ, suggesting the model is unable to identify the smoothness of
the best fitting underlying career trajectories, due to the noisy data.
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Table 3.7. Posterior parameter summaries for the set of Gaussian process parameters for Neil
Wagner, including the 68% and 95% credible intervals.

Parameter Mean Median 68% C.I. 95% C.I.

λ 0.78 0.77 (0.70, 0.87) (0.62, 0.99)

σ 0.16 0.14 (0.06, 0.26) (0.03, 0.42)

` 42.2 27.4 (10.8, 69.1) (3.8, 179.2)

γ 1.49 1.48 (1.15, 1.83) (1.02, 1.98)

With respect to σ, there is little posterior weight at values on or close to zero, providing some

evidence to suggest that Wagner’s bowling ability has not remained constant throughout his

career to date. Little appears to have been learnt about each of the parameters controlling the

smoothness of the Gaussian process, ` and γ, again indicating the model is unable to distinguish

whether smooth or more jagged career trajectories provide the most appropriate fit to the data.

Innings and venue-specific effects

In Figures 3.4 and 3.5 the posterior predictive distribution for the standardised and adjusted

effective bowling averages, ω(t) and α(t), which include the innings and venue-specific effects

for each observation, are shown in blue. The results suggest that after adjusting for opposition

batting strength, Wagner has tended to perform better at venues outside of New Zealand, as

indicated by the comparatively lower estimates for away observations (orange bars). Likewise,

Wagner appears to concede fewer runs per wicket taken when bowling against players who are

batting in their team’s first innings of a match. The posterior distributions for the innings and

venue-specific effects, φ and ψ, are presented in Figure 3.8 and support these results.

The data have been informative with respect to both parameters, with the posterior parameter

information summarised in Table 3.8, allowing for the magnitude of these effects to be quantified.

The point estimate for ψ, suggests that after adjusting for the relative strengths of batsmen

bowled to, Wagner concedes 8% more runs per wicket taken, in matches played in New Zealand,

compared with matches played at a neutral venue. It is possible to compare the effect of bowling

at a home venue versus an away venue, by squaring the estimates for ψ in Table 3.8, giving a

value of ψ2 = 1.17, suggesting that Wagner concedes an average of 17% more runs per wicket

taken, in bowling performances that take place in New Zealand. In a similar manner, it is

possible to compare Wagner’s bowling performances against players who are batting in their

team’s first and second innings of a match by squaring the point estimate for ψ, giving an

estimate of φ2 = 0.89. That is, on average Wagner concedes 11% fewer runs per wicket taken,
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when bowling against players batting in their team’s first innings of a match.

Table 3.8. Posterior parameter summaries for the innings and venue-specific effect parameters
for Neil Wagner, including the 68% and 95% credible intervals.

Parameter Mean Median 68% C.I. 95% C.I.

φ 0.94 0.94 (0.88, 1.01) (0.82, 1.07)

ψ 1.08 1.08 (1.00, 1.16) (0.93, 1.25)
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Figure 3.8. Posterior distributions for the innings-specific parameters, φ and ψ. Red lines
indicate the prior distribution. The data appear to provide some evidence to suggest that Wagner
performs better at away venues, in the opposition batting team’s first innings of a match.

Intuitively, each of these results seem somewhat surprising on face value. As seen in Chapter

2, batsmen tend to perform at their peak when batting in home conditions, in their team’s first

innings of a match, yet, Wagner tends to excel in these exact conditions. Furthermore, New

Zealand is widely regarded as country where playing conditions tend to suit pace bowlers, such

as Wagner, more so than many other countries globally, which makes the point estimate for ψ

particularly intriguing. However, digging a little deeper into the data reveals several plausible

explanations for each of these findings.

Firstly, while New Zealand is generally considered a pace bowling haven, almost all of

Wagner’s bowling performances away from New Zealand, have taken place in either England,

Australia or South Africa — countries where conditions also tend to suit pace bowling. Only

four of Wagner’s 48 Test appearances have been in sub-continental countries, where pace bowling

can be more arduous and less rewarding. Secondly, as noted earlier in Section 3.3.2, modern

New Zealand pitches have become somewhat known for offering some assistance to bowlers early

in a match, before flattening out and becoming easier to bat on as a match progresses, before

starting to deteriorate on day four or five. This does not align with the trend that is often
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seen in the majority of pitches around the world, where batting conditions are typically at their

best on day one, and deteriorate over time. With this in mind and noting that 31 of Wagner’s

48 Test matches have been played on New Zealand soil, it is perhaps unsurprising to see that

Wagner has enjoyed more success when bowling against opposition players who are batting in

their team’s first innings of a match.

Quantifying bowling career progression

As observed in Figures 3.4 and 3.5, Neil Wagner’s underlying bowling ability appears to have

steadily improved over the course of his playing career to date. The posterior predictive estimates

for ω(t) and α(t) provide an indication of a player’s ability during any bowling spell of their

career, allowing for an estimation of when a player’s bowling ability was at its peak and at when it

was at its worst. Additionally, the bowling career trajectory model has the capability to forecast

a player’s future ability, including an estimate for their next career bowling spell, α(T + 1). The

default prediction is made assuming a neutral venue and it is unknown what innings a player is

bowling in, however, the innings and venue-specific information can be factored into the estimate

if known.

The posterior distributions for Wagner’s worst and best estimated career bowling abilities, in

units of an adjusted bowling average, are provided in Figure 3.9 and are summarised in Table

3.9. Corresponding posterior distributions specifying when Wagner experienced each of these

points, in terms of a career bowling spell index, are also provided in Figure 3.9.

Table 3.9. Posterior point estimates for Neil Wagner’s worst and best career bowling abilities,
in units of an adjusted bowling average. The 68% and 95% credible intervals are provided, as
well as a prediction of ability for his next career bowling spell, α(T + 1).

Point estimate 68% C.I. 95% C.I.

Career worst α(t) 35.2 (30.3, 43.3) (27.0, 55.5)

Career best α(t) 21.3 (17.3, 24.9) (13.5, 27.9)

α(T + 1) 25.8 (21.5, 29.8) (16.9, 34.6)

At his peak, Wagner is estimated to have had a bowling ability equivalent to an adjusted

bowling average of 21.3, placing him among the best bowlers in the world at the time. As

suggested in Figure 3.9, it is highly probable that Wagner is either at the peak of his career

at present, or experienced his peak very recently. This result is unsurprising, given Wagner

is presently ranked as the third best bowler in the world, based on the ICC bowling ratings.

Conversely, Figure 3.9 suggests that Wagner’s underlying bowling ability was at its lowest at

some point near the beginning of his career, providing further evidence to support the notion

that Wagner has been consistently improving since appearing on the Test scene.
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Figure 3.9. Posterior distributions for Neil Wagner’s worst and best career bowling abilities,
α(t), in units of an adjusted bowling average. The estimated bowling spell index, t, for when
Wagner experienced each of these points of his career are also provided.

3.4.2 Hierarchical analysis of bowlers

As with the batting model presented in Chapter 2, a hierarchical analysis was performed to

gain a deeper understanding of the typical Test match bowling career trajectory. Of particular

interest was to determine whether short and long-term form appears to affect bowlers any

differently to batsmen, which could have provide some insight as to how selectors should consider

a player’s recent bowling performances with a view to the future. The hierarchical analysis was

performed across the set of Gaussian process parameters, {λ, σ, `, γ}, as well as the innings and

venue-specific parameters, {φ, ψ}.
For each model parameter, an underlying distribution is assumed and a set of relevant

hyperparameters, η, is introduced, allowing for the quantification of typical values each parameter

is clustered near, without having to analyse the data jointly. The posterior estimates for set of

model parameters {λ, σ, `, γ, φ, ψ}, are obtained for each player and post-processed jointly using

MCMC (Hastings, 1970), to construct what the hierarchical model would have produced, had
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the full data set of all 522 players been analysed together.

As with the hierarchical analysis performed on batting career trajectories in Chapter 2, the

set of parameters, {λ, σ, `, φ, ψ}, are each assumed to be well approximated by a log-normal

distribution, while γ is assumed to loosely follow a Normal distribution, truncated at [1, 2].

Conditional on the set of hyperparameters, η = {µλ, ξλ, µ`, ξ`, µσ, ξσ, µγ, ξγ, µφ, ξφ, µψ, ξψ}, the

hierarchical model structure is as follows

log(λ) ∼ Normal(log(µλ), ξ
2
λ)

log(`) ∼ Normal(log(µ`), ξ
2
` )

log(σ) ∼ Normal(log(µσ), ξ2σ)

γ ∼ Normal[1,2](µγ, ξ
2
γ)

log(φ) ∼ Normal(log(µφ), ξ2φ)

log(ψ) ∼ Normal(log(µψ), ξ2ψ)

(3.14)

The hyperparameters, η = {µλ, ξλ, µ`, ξ`, µσ, ξσ, µγ, ξγ, µφ, ξφ, µψ, ξψ}, are assigned prior dis-

tributions as per Equation 3.15 and sufficiently encompass the posterior parameter space that

contains the bulk of the posterior mass. The marginal posterior distribution for each parameter

can then be obtained via MCMC, using Equation 2.19.

µ` ∼ Uniform(0, 50)

µλ ∼ Uniform(0, 5)

µσ, µγ, µφ, µψ ∼ Uniform(0, 2)

ξλ, ξ`, ξσ, ξφ, ξψ ∼ Uniform(0, 2)

ξγ ∼ Uniform(0, 1)

(3.15)

The MCMC algorithm was run for 100,000 iterations for each of the model parameters.

The joint posterior distributions for the set of hyperparameters defining the Gaussian process

parameters, {µλ, ξλ, µ`, ξ`, µσ, ξσ, µγ, ξγ}, are presented in Figure 3.10, while the joint posterior

distributions associated with the hyperparameters defining the innings and venue-specific effects,

{µφ, ξφ, µψ, ξψ}, are shown in Figure 3.11. As a truncated normal distribution is assumed for γ,

the starting point for the algorithm was simply selected by taking the central value of each of

the uniform hyperpriors defined in Equation 3.15, corresponding to starting values of: µγ = 1.5,

ξγ = 0.5. Once again, no burn-in period was deemed necessary, as each of the selected starting

points for the MCMC algorithm appear to be typical of the corresponding joint posterior

distribution (Meyn & Tweedie, 1993).

For the model parameters related to the Gaussian process prior for the set of {wt} terms, the
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Figure 3.10. Joint posterior distributions for the set of hyperparameters
{µλ, ξλ, µ`, ξ`, µσ, ξσ, µγ, ξγ}, shown across the uniform prior parameter space. Red indi-
cates areas of high density, while dark blue indicates areas of low density. The scale indicates
that the darkest red areas are 256 times more dense than the darkest blue areas. The white circle
indicates the starting point of the MCMC algorithm.
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hierarchical analysis was relatively informative with respect to λ and a little informative for σ.

The areas of high density for λ confirm what was learnt from the summary data; standardised

career bowling averages are typically clustered around values close to 1.0. Less variation is seen

across values for µλ when performing the hierarchical analysis in a bowling context, compared

with the analysis in Chapter 2. This observation provides some statistical evidence to support

the assumption that batting ability tends to vary more than bowling ability, between players.

With regards to σ, Figure 3.10 suggests that the hyperparameter µσ has little posterior weight

assigned to values where µσ → 0, indicating that the average player will likely exhibit some

form of variation in bowling ability, over the course of their Test career. Generally speaking the

analysis has been less informative with respect to the parameters governing the effect of short

and long-term form on a player’s estimate career trajectory, ` and γ.

However, one result of potential interest with respect to `, is that compared with the

hierarchical analysis performed in the context of batting in Chapter 3, there is far more posterior

mass where µ` < 20. This may suggest that in general, bowling performances may be more

likely to be influenced by recent performances and effects due to short-term form, than batting

performances. As such, there may be a valid argument that recent performances may be more

indicative of current underlying ability for bowlers than they are for batsmen, which could have

real-world implications when it comes to squad and team selection, for upcoming tours and

matches.

As with the hierarchical analysis performed in Chapter 2, the posterior parameter space

for γ tends to have higher density towards the centre of the parameter space for µγ, where

µγ → 1.5. This result suggests that the proposed model tends to assign less posterior weight

to highly erratic bowling career trajectories (implied by values of γ → 1), and very smooth

trajectories (implied by values of γ → 2). As such, the Gaussian processes that are used to

estimate bowling career trajectories tend to avoid following functions that are generated from a

Matérn 1
2

or squared-exponential covariance function, as seen in Figure 2.4.

In Chapter 2, the hierarchical analysis for the innings and venue-specific effect parameters,

φ and ψ, was relatively informative, with the bulk of the posterior mass for each of the

hyperparameters µφ and µψ, concentrated near values greater than 1. This provided further

support for the widely accepted assumption, that most players score more runs when batting at

a home venue, in their team’s first innings of a match. In the context of bowling, the results of

the hierarchical analysis are less clear-cut.

As shown in Figure 3.11, typical values for hyperparameters µφ and µψ appear to be clustered

around values of 1. Therefore, after the strengths of batsmen bowled to have been accounted

for, the hierarchical analysis has not provided any definitive evidence to suggest that the typical

Test bowler will tend to perform better when bowling at a home venue, against players who
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Figure 3.11. Joint posterior distributions for the set of hyperparameters {µφ, ξφ, µψ, ξψ}, shown
across the uniform prior parameter space. Red indicates areas of high density, while dark blue
indicates areas of low density. The scale indicates that the darkest red areas are 256 times more
dense than the darkest blue areas. The white circle indicates the starting point of the MCMC
algorithm.

are batting in their team’s first innings of a match. Rather, observed differences in a player’s

career bowling averages between innings can generally be explained by the fact that batting

usually becomes more difficult as a match progresses, which is accounted for in the data by the

individual-specific estimates for the effective batting average, µ(x, t). A similar conclusion can

be reached when considering the venue-specific effects on batting performances; players tend to

find batting away from home a more difficult prospect. An outcome of some interest in regards

to the venue-specific effect, ψ, can be observed when conditioning on player bowling type and

considering the context in which pace and spin bowlers tend to succeed.

Spin bowlers and venue-specific effects: a case study

As discussed in Section 3.3.2, different countries around the world are home to conditions that

can be more favourable to certain bowling types. Pitches and the amount of assistance they may

offer both pace and spin bowlers can differ greatly, as a result of local climate, varieties of soil

available and preparation techniques. Test playing nations located in the sub-continent such as

Bangladesh, India, Pakistan, and Sri Lanka are renowned for their spin-friendly conditions, not

only due to the pitches produced — which often favour spin bowling — but also as a function of

the high average heat and humidity level, which can make it difficult for pace bowlers to bowl
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with sustained intensity, over extended periods of time. In contrast, pace bowlers tend to receive

more assistance from the overhead conditions and pitches typically prepared in countries with

more temperate climates, such as England and New Zealand. With this in mind, estimates for

the venue-specific effect, ψ, may not depend so much on a player’s affinity with their local, home

conditions, rather their bowling type and country of origin.

To explore this point further, posterior estimates for ψ are presented in Table 3.10, for all

spin bowlers in the Cricsheet data set who have taken 100 or more Test wickets. Of the 16

players satisfying this criteria, 10 are from the sub-continent (four from India and two from each

of Bangladesh, Pakistan and Sri Lanka) and six are not (two from England and one from each

of Australia, New Zealand, South Africa and West Indies).

Table 3.10. Posterior point estimates for the venue-specific effect, ψ, for each of the spin
bowlers in the Cricsheet data set who have taken 100 or more Test wickets. The 68% and
95% credible intervals are also provided, illustrating the preference of spin bowlers from the
sub-continent to play at home venues, and those from outside the sub-continent to prefer playing
away from home.

Player Wickets ψ 68% C.I. 95% C.I.

R. Herath2 (SL) 397 0.91 (0.86, 0.96) (0.82, 0.99)

N. Lyon (AUS) 390 1.07 (1.02, 1.12) (0.97, 1.19)

R. Ashwin (IND) 365 0.91 (0.86, 0.97) (0.81, 1.02)

G. Swann (ENG) 255 1.02 (0.96, 1.09) (0.90, 1.16)

Y. Shah (PAK) 224 0.94 (0.87, 1.01) (0.81, 1.10)

R. Jadeja (IND) 213 0.87 (0.80, 0.94) (0.74, 1.02)

S. al Hasan2 (BAN) 193 1.01 (0.93, 1.09) (0.86, 1.16)

M. Ali (ENG) 181 0.97 (0.89, 1.04) (0.83, 1.12)

S. Ajmal (PAK) 178 0.98 (0.90, 1.05) (0.83, 1.13)

H. Singh2 (IND) 166 0.97 (0.90, 1.05) (0.83, 1.13)

D. Perera (SL) 156 0.88 (0.80, 0.96) (0.73, 1.05)

D. Bishoo (WI) 117 1.10 (1.00, 1.20) (0.91, 1.32)

T. Islam (BAN) 114 0.94 (0.85, 1.04) (0.77, 1.13)

P. Ojha (IND) 113 0.88 (0.76, 1.00) (0.67, 1.14)

D. Vettori2 (NZ) 111 1.16 (1.05, 1.27) (0.96, 1.40)

K. Maharaj (SA) 110 1.13 (1.03, 1.24) (0.94, 1.37)

For spin bowlers from the sub-continent, the point estimate for ψ is less than 1 for all 10

2The Test careers of Rangana Herath, Shakib al Hasan, Harbhajan Singh and Daniel Vettori began prior to
2008. Consequently, the Cricsheet data set does not contain all career bowling data for these players.



Chapter 3. Estimating bowling career trajectories 105

players, implying that all of these players have enjoyed more success when bowling at venues in

their native country, compared with venues away from home. Furthermore, for eight of the 10

sub-continental players, the 68% credible interval provides evidence to support the presence of a

venue-specific effect, although the 95% credible interval only provides support of such an effect

for Sri Lankan Rangana Herath. Conversely, the posterior point estimate for ψ is greater than 1

for five of the six spin bowlers from outside the sub-continent, implying that the majority of

these players tend to concede fewer runs per wicket when bowling outside of their respective

home countries. Of these players, only Englishman Moeen Ali appears to prefer bowling on his

home soil.

The results presented in Table 3.10 suggest that re-running the hierarchical analysis for the

venue-specific effect, ψ, on two separate data sets of spin bowlers, conditional on each player’s

country of origin, would yield two different conclusions. Firstly, an analysis that only includes

the data of spin bowlers from the sub-continent would likely indicate such bowlers tend to prefer

bowling in home conditions. Secondly, running the analysis on the complementary set of spin

bowlers originating from outside the sub-continent, would likely suggest that these players tend

to enjoy more success when bowling at venues outside of their home country. It is entirely

plausible, that similarly contrasting results would be obtained if separate hierarchical analyses

were performed on unique groups of pace bowlers, where the inclusion of a player’s data in an

analysis was conditional on a player’s country of origin.

3.4.3 Comparison of bowling career trajectories

It is possible to compare the bowling careers of multiple players by comparing their career

trajectories, which are estimated using the posterior predictive distribution for the adjusted

effective bowling average, α(t). The bowling career trajectories for the current top five Test

bowlers, as ranked by the bowling career trajectory model, are provided in Figure 3.12. Varying

levels of consistency and improvement in performance are shown between the careers of these

players, illustrating the uncertainty and difficulty in estimating an individual’s underlying bowling

ability.

As suggested in Figure 3.12, the bowling performances of Indian pace bowler Jasprit Bumrah

appear to be highly correlated with observations that are in close proximity of one another in the

input space, t. That is to say, it appears as though Bumrah’s career to date resembles that of a

player whose underlying bowling ability is heavily affected by short-term form. However, it is

likely that the relatively small sample size of Bumrah’s career data is a contributing factor to the

erratic function fitted to estimate his underlying bowling ability. One would expect Bumrah’s

career trajectory to become more smooth over time, unless the effect of short-term form truly

has an impact of such a large magnitude on his bowling performances. While it is unlikely
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Figure 3.12. Test match bowling career trajectories for current top five Test bowlers ranked
by the bowling career trajectory model: Jasprit Bumrah, Pat Cummins, Ishant Sharma, Neil
Wagner, and Kagiso Rabada. Predictions of bowling ability for the next 50 bowling spells are
also included (dotted).

that Bumrah’s underlying bowling ability fluctuates as wildly as suggested by Figure 3.12, the

results may at least suggest that Bumrah is the type of bowler who can experience moments of

being in the zone, where he is unplayable during certain periods of a match, comparable to the

concept of the hot hand in basketball, where players exhibit shooting performances where they

are simply unable to miss. On the opposite end of the spectrum from Bumrah, exists the career

trajectory for South African pace bowler Kagiso Rabada, whose career bowling performances

have been highly consistent, but provide little evidence to suggest he has displayed any level of

improvement or deterioration in bowling ability, over the course of his career to date.

In terms of consistency, the career trajectories estimated for Pat Cummins, Ishant Sharma

and Neil Wagner, lie somewhere between that of Bumrah and Rabada. Like Bumrah — although

on a less dramatic scale — Sharma’s career performances appear to be somewhat related to

one another in the short-term and it is possible to identify several points of Sharma’s career
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where he was struggling with the ball: one period early in his career, approximately between

bowling spells 65 and 95; and a second shortly after, approximately between spells 160 and

190. Given Sharma made his Test debut for India at the age of 19 and has been a mainstay in

the side since 2008, it is unsurprising to see his career trajectory exhibit behaviour akin to the

concept of finding your feet, discussed in Chapter 2, whereby he has taken some time to reach

his peak bowling ability. Given Sharma has had over a decade to hone his craft to the point he

has become the second highest Test wicket taker of all-time among Indian pace bowlers (sixth

highest across all Indian bowlers), his overall improvement in recent years should not come as a

surprise.

On the other hand, as discussed in Section 3.4.1, Neil Wagner has exhibited little else than

constant improvement over his career to date and has certainly been able to find more consistency

in his performances than Sharma. Wagner’s bowling career trajectory exists as a great example

of a player who made their debut towards the second half of their professional career, with

a vast amount of domestic experience, and therefore has required little time to adjust to the

demands of international Test cricket. Born and raised in South Africa, Wagner only moved to

New Zealand in 2008 at the age of 22 and would have featured in national side sooner than 2012,

but for the ICC’s governing laws requiring players to reside in a country for four years before

being eligible for selection. In the meantime, the 34 year old Wagner continues to improve and

has shown few signs of slowing down.

3.4.4 Player bowling rankings

The model output can also be used to rank the top Test bowlers in the world at present by

obtaining estimates for the adjusted effective bowling average, α(T + 1), for all players, where

T + 1 is the bowling spell index for each player’s next career bowling spell. The current3 top

20 Test bowlers in the world are presented in Table 3.11, ranked by their expected adjusted

bowling average, α(T + 1), and provides an alternative means of quantifying and ranking the

bowling abilities of cricket players, while maintaining a meaningful interpretation. To be eligible

for ranking, each player must have participated in a Test match since the 1st January 2019 and

have taken a minimum of 30 Test wickets, with an up-to-date list of the top 50 Test match

bowlers maintained at www.oliverstevenson.co.nz/#research. It is worth noting that the

predictions for α(T + 1) assume a neutral venue and it is unknown whether the player is bowling

against players who are batting in their team’s first or second innings of a match. Corresponding

ICC bowling ratings and world rankings are also provided for comparison. As with the batting

rankings presented in Chapter 2, the bowling career trajectory model rankings and ICC rankings

3as of 1st December 2020
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are relatively similar, although there are several notable differences. Respective career trajectory

model and ICC rankings are presented in Figure 3.13, highlighting where the two methods are

in agreement and where there is a lack of consensus.

Table 3.11. Current (as of 1st December 2020) top 20 Test match bowlers, ranked by expected
adjusted average in their next career bowling spell, α(T + 1), including the 68% credible interval.
ICC Test bowling ratings and world rankings (#) are shown for comparison.

Career Career

Rank Player Wickets bowling average adjusted average ν̄player α(T + 1) ICC rating (#)

1. J .Bumrah (IND) 68 20.3 23.0 31.4 24.2 (12.3, 35.7) 779 (9)

2. P. Cummins (AUS) 143 21.8 24.3 32.0 25.1 (19.2, 27.0) 904 (1)

3. I. Sharma (IND) 291 32.4 32.7 35.2 25.7 (19.6, 31.5) 729 (17)

4. N. Wagner (NZ) 206 26.6 27.6 34.3 25.8 (20.7, 28.6) 843 (3)

5. K. Rabada (SA) 197 22.9 25.0 32.6 26.8 (22.0, 27,9) 802 (6)

6. J. Anderson (ENG) 538 25.4 26.5 34.1 27.2 (24.2, 28.0) 781 (8)

7. T. Southee (NZ) 284 29.0 30.3 34.1 27.7 (21.0, 31.5) 812 (4)

8. J. Hazlewood (AUS) 195 26.2 28.1 33.2 28.0 (22.6, 29.8) 769 (11)

9. J. Pattinson (AUS) 81 26.2 26.9 34.6 28.4 (23.3, 33.4) 333 (43)

10. S. Broad (ENG) 513 27.5 29.9 32.7 28.5 (21.7, 30.3) 845 (2)

11. M. Shami (IND) 180 27.4 29.4 33.1 28.6 (23.2, 30.5) 749 (13=)

12. R. Ashwin (IND) 365 25.4 27.7 32.7 29.6 (24.6, 30.6) 756 (12)

13. M. Abbas (PAK) 80 21.7 25.3 30.5 29.7 (20.4, 34.9) 749 (13=)

14. T. Boult (NZ) 267 27.6 28.7 34.3 29.7 (25.7, 32.4) 770 (10)

15. M. Starc (AUS) 244 27.0 29.1 32.9 29.8 (24.1, 31.6) 797 (7)

16. B. Stokes (ENG) 158 31.4 31.6 35.4 30.1 (24.8, 34.6) 587 (24)

17. C. de Grandhomme (NZ) 47 31.6 30.7 36.7 31.1 (26.2, 39.9) 476 (32)

18. S. al Hasan4 (BAN) 193 31.1 30.7 36.1 31.2 (27.8, 36.4) N/A (N/A)

19. K. Jarvis (ZIM) 46 29.4 33.8 31.0 31.3 (22.5, 33.4) 347 (41)

20. K. Roach (WI) 196 28.2 29.1 34.4 31.7 (26.6, 36.0) 744 (15)

Firstly, the bowling career trajectory model ranks Indian pace bowler Jasprit Bumrah as

the current world number one, while the ICC ratings have him ranked 9th. As shown in Figure

3.12 and discussed in Section 3.5.2, there is some evidence to suggest Bumrah is a player whose

underlying bowling ability may be affected by short-term form and recent performances. As

he has exhibited a number of strong performances in his most recent matches — his last 20

wickets have come at an average of 18.7 runs apiece — the bowling career trajectory model ranks

him highly. A player who appears to be similarly impacted by short-term form, is West Indian

pace bowler Jason Holder, whom is ranked 34th by the proposed model, but 5th by the ICC.

Holder’s last 10 wickets have come at an average of 30.1 runs, while his last five at an average of

51.8, which subsequently sees his ranking under the career trajectory model slip significantly.

Comparable, although less dramatic, short-term form effects can be attributed to Indian pace

bowler Ishant Sharma’s model ranking of 3rd, versus his ICC ranking of 17th. It is interesting to

4Shakib al Hasan is currently serving a two-year ban for violating the ICC Anti-Corruption Code, which
expires in October 2021. Consequently, he is unrated by the ICC at present.
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note that these differences in rankings between methods appear to be due to the bowling career

trajectory model weighting recent performances more heavily than the ICC ratings method, the

opposite of what was observed for a number of batsmen in Chatper 2.

A second discrepancy between rankings is observed when considering the adjusted career

bowling averages of players where there is significant disagreement between the two ranking

methods. As noted in previous sections, players who have bowled against a higher quality of

batsman, on average, are rewarded by the adjusted average, while those who have tended to

bowl against weaker opposition are penalised. In Figure 3.13, all-rounders Ben Stokes and Colin

de Grandhomme are among several players who are favoured more heavily by the proposed

career trajectory model than the ICC ratings method. The adjusted career bowling averages and

individual-specific estimates for the average batsman bowled to, ν̄player, are presented in Table

3.11 for each player. Clearly, both Stokes and de Grandhomme are among those penalised less

heavily by the adjusted average, as they appear to have bowled to a higher quality of batsman,

on average, than many other players in the top 20. In fact, de Grandhomme is only one of two

players (the other being Shakib al Hasan), whose adjusted average is lower than their career

bowling average. Conversely, two players favoured by the ICC ratings over the bowling career

trajectory model, Englishman Stuart Broad and Australian Mitchell Starc, are two players

who, based on estimates for ν̄Broad and ν̄Starc, appear to have bowled against a lower quality of

batsman, on average, over the course of their Test careers. It is therefore possible to speculate

that while the ICC rating method does make an attempt to account for opposition strength, the

adjustment in some cases may not be enough. Again, due to the closed source nature of the ICC

ratings formula, it is unknown how the adjustment for opposition strength is incorporated into

their methodology.

A third consideration is to note that the player-specific prediction for current bowling ability,

α(T + 1), assumes a neutral venue. Under this assumption, Sri Lankan pace bowlers Suranga

Lakmal and Lahiru Kumara, are predicted to have adjusted bowling averages of 38.5 and 43.0

respectively, for their next career bowling spells. Both predictions are in excess of their adjusted

career bowling averages of 36.8 and 37.8, however, these inferior estimates for α(T + 1) do not

appear to be related to a poor run of recent form. In fact, a closer look at Lakmal and Kumara’s

career trajectories suggest they both appear to be improving and have been relatively successful

in their most recent performances. Instead, the inflated estimates for α(T + 1) are a result

of both players performing strongly in home conditions, at Sri Lankan venues, but struggling

heavily when bowling outside of their home country. Subsequently, when considering predictions

of bowling ability for a neutral venue, both players are penalised by the model, which sees their

respective rankings of 39th and 44th under the proposed model, pale in comparison to their ICC

rankings of 22nd and 29th.
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Finally, the significant differences observed between the bowling career trajectory rankings

and ICC rankings for James Pattinson (9th versus 43rd) and Kyle Jarvis (19th versus 41st), can

be attributed to the rating decay system implemented by the ICC. Pattinson has consistently

delivered strong bowling performances during his nine year tenure in the Australian side, however,

his career has been plagued by injury, limiting the number of appearances he has made for the

national side. While Pattinson has featured in four Tests across 2019 and 2020, his most recent

appearances prior to that were in 2016. The bowling career trajectory model estimates Pattinson

to be a very strong bowler, based on his historical career data, while the ICC ratings method is

less convinced about his quality, due to a lack of more recent performances. Meanwhile, Jarvis’

rating is prone to decay, due to his native country, Zimbabwe, playing far fewer Tests than any

other Test playing nation. Since the start of 2015, Zimbabwe have only featured in 13 Test

matches, whereas countries such as Australia and India will typically play this many Tests in a

calendar year.

Ultimately, both the bowling career trajectory model and ICC rating method attempt

to quantify the relative bowling strengths of players around the world. Both methods make

adjustments to account for recent performances and opposition batting strength, however, the

proposed model’s predictions have the advantage of providing a meaningful explanation of ability.

While the interpretation of: expected number of runs conceded before taking next career wicket,

adjusted for opposition batsman strength, is not quite as simple as the model interpretation in

the context of batting, it is nevertheless a quantity that can be readily understood by members

of the cricketing community and certainly has more meaning than the ICC’s rating points.

Moreover, the proposed model is able to provide a more direct means of quantifying differences

in bowling ability between players. For example, by computing the posterior probability

P (αCummins(TCummins + 1) < αWagner(TWagner + 1)) = 0.525, the bowling career trajectory model

can surmise ‘there is a 52.5% chance that Pat Cummins concedes fewer runs than Neil Wagner

before taking his next career wicket, assuming equal opposition batsman strength’ — a much

more meaningful conclusion than ‘Pat Cummins is 61 rating points better than Neil Wagner’.

Additionally, once known, the innings and venue-specific information can be incorporated into

the bowling career trajectory predictions, providing more accurate estimates of upcoming player

performance. These kinds of probabilistic statements are especially useful for comparing the

abilities of players with similar career bowing averages, but different estimates for α(T + 1),

allowing for coaches and selectors to gain more insight in regards to the risks and rewards of

selecting one player over another.
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Figure 3.13. Comparison of world rankings between the bowling career trajectory model and
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3.5 Model diagnostics

3.5.1 Model prediction

The bowling career trajectory model attempts to describe how a player’s bowling ability has

varied over the course of their career, as well as providing a forecast for future estimates of

ability. However, the proposed model can only be considered a useful tool if estimates of future

performances are more accurate than predictions made using metrics such as the career bowling

average. Therefore, an assessment of the proposed model’s predictive capabilities are essential

when it comes to validating the model, which is achieved by computing the relative prediction

errors for future bowling performances. Note that the data for each observation fitted by the

nested sampling algorithm is measured in units of standardised runs conceded, the mean squared

prediction error is also reported in terms of standardised runs conceded.

The approach to computing prediction errors for the bowling career trajectory model is

similar to the method used in Chapter 2. It is assumed that the model has access to all previous

bowling performances, {s1, s2, ..., sT}, when predicting the number of standardised runs to be

conceded before taking a wicket in a player’s next career bowling spell, sT+1. However, as sT+1

is a future observation, yet to be observed, the prediction error is computed using leave-one-out

cross-validation (Sammut & Webb, 2010), by forecasting a value for sT , and evaluating how

close this value is to the true observed value of sT , using mean squared error (MSE). In order to

avoid the complications of non-wicket taking bowling spells, a player’s most recent wicket taking

bowling spell, {sT}, is used as the test data, while {s1, ..., sT−1} is used as the training data.

To provide a means of comparing the predictive accuracy of the bowling career trajectory

model, predictions of future bowling performance are also obtained using set of simple moving

average (SMA) models of varying orders. The SMA models compute a prediction for sT , using a

player’s most recent 10%, 25%, 50% and 100% of career bowling performances. For example, if a

player has 100 observed bowling spells in their career bowling data, the SMA(10%) model makes

a prediction for sT using the most recent 10 bowling spells, while the SMA(100%) model would

account for all 100 of the player’s bowling spells. Again, the SMA(100%) model assumes that

ability remains constant throughout a career and is equivalent to using a player’s standardised

career bowling average to predict future observations.

Under the conditions of leave-one-out cross-validation, a player’s most recent wicket taking

bowling spell is removed from the training data set and is treated as the test data, sT . Therefore,

where a player has only taken one or fewer wickets in their career, prediction errors are unable

to be computed. Of the 522 players in the Cricsheet data set, prediction errors were able to be

computed for 405 players, which are presented in Table 3.12. Given the hierarchical analysis

presented in Section 3.4.2 provided little evidence to support the presence of both innings and
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venue-specific effects, after adjusting for opposition batting strength, the prediction error for the

bowling career trajectory model that excludes these effects has been included.

Table 3.12. Mean squared prediction errors using leave-one-out cross-validation. The bowling
career trajectory model that excludes innings and venue-specific effects outperforms all other
models across all players, while the SMA(10%) model tends to perform worst of all.

Minimum # of career bowling spells

Model No minimum 10 spells 50 spells 100 spells

SMA(10%) model 1.30 1.37 1.06 0.74

SMA(25%) model 0.97 0.94 0.66 0.52

SMA(50%) model 0.77 0.70 0.53 0.46

SMA(100%) model 0.68 0.66 0.48 0.43

Bowling career trajectory model 0.59 0.59 0.53 0.46

(no innings/venue-specific effects)

Bowling career trajectory model 0.62 0.62 0.58 0.53

(with innings/venue-specific effects)

In terms of which model provides the most accurate predictions of future performances, the

results provided in Table 3.12 are a little variable. Across the entire data set of players analysed,

the bowling career trajectory models appear to have the smallest prediction error, with the

model that excludes the innings and venue-specific effects performing best of all. This result does

not come as a huge surprise; after taking into account the strength of opposition batsmen bowled

to, there was less clear-cut evidence to support the presence of such effects in a bowling context

for many players, as shown by the hierarchical analysis conducted in Section 3.4.2. Applying the

principle of Occam’s razor (Myung & Pitt, 1997; Rasmussen & Ghahramani, 2000), it is possible

to conclude that the most appropriate bowling career trajectory model is the one that does not

include the innings and venue-specific effects.

Interestingly, when conditioning the data to only include players who have bowled in at least

50 career bowling spells, the SMA(100%) model appears to perform best of all. This result

may imply that bowling ability tends to settle somewhere close to a player’s true underlying

ability, after bowling in a certain number of spells. This is supported by the observation made

in Section 3.4.1, that after adjusting for the quality of batsmen bowled to, bowling performances

tends to vary less during a career than batting performances. Or perhaps, bowling is not a skill

that can be measured purely by runs scored and wickets taken.

Furthermore, the support for the SMA(100%) model when conditioning on players who

have bowled in more than 50 spells, may imply that a major advantage of the proposed career

trajectory model is the somewhat informative prior distribution imposed for the parameter
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controlling the mean value of the Gaussian process, λ. For example, a player who has taken

two career wickets at an average of 100.0, is unlikely to have a true underlying bowling ability

as suggested by their current career average. Instead, the prior over λ limits such extreme

predictions of underlying ability for players who have bowled in a finite number of career bowling

spells. This finding is supported by the results of the hierarchical analysis in Section 3.4.2, where

the posterior distribution for hyperparameter µλ suggests there is far less variation in bowling

ability between players, than there is for batting ability.

3.5.2 Model comparison

Again, as nested sampling has been employed as the Bayesian sampling scheme during the model

fitting process, model comparison is effortless via the marginal likelihood or evidence, Z. In

Table 3.13, the marginal likelihood for the bowling career trajectory model is presented for

the current top 20 ranked bowlers identified in Section 3.4.4. The marginal likelihood for the

SMA(100%) model, which assumes a player’s bowling ability can be accurately estimated by

their standardised or adjusted career bowling average, is also provided (Z0). The logarithm of

the Bayes factor between the two models is also given, providing the factor by which one model

is favoured over the other for individual players. A negative value for this quantity indicates

that the SMA(100%) model is more likely to apply to a player’s bowling career data than the

proposed career trajectory model. The sum of marginal likelihoods over all players in the data is

also presented, as is the average logarithm of the Bayes factor.

Generally speaking, the constant ability is favoured across the majority of players who have

bowled in a significant number of spells; Kyle Jarvis is the only player in Table 3.13 whose

career data appears to be better approximated by the bowling career trajectory model. These

results support the findings from Table 3.12; the SMA(100%) model tends to be more accurate

at predicting current player bowling ability the more spells a player has bowled in.

It is worth noting that as the nested sampling algorithm employs an MCMC sampler to

propose new parameter values, the estimates for marginal likelihood are subject to a degree of

sampling error. Considering the size of the sampling errors and the small difference in likelihoods

between models for many players, it is difficult to confidently conclude whether one model is

more appropriate than the other when it comes to estimating player bowling ability. Once again

the principle of Occam’s razor can be applied (Myung & Pitt, 1997; Rasmussen & Ghahramani,

2000), suggesting it is perhaps not always worth the effort to model bowling performances using

computationally demanding models, such as Gaussian processes. Instead, for the majority of

players, it may be sufficient to account for the historic strength of batsmen bowled to over the

course of their careers using standardised and adjusted runs. Current bowling ability can then

be assumed to be close to a player’s standardised or adjusted career bowling average.
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Table 3.13. Marginal likelihood estimates for the top 20 ranked Test match bowlers as ranked
by the bowling career trajectory model. The summation of marginal likelihoods and the average
logarithm of the Bayes factor over all players shows the data generally support the SMA(100%)
model, over the proposed model.

Rank Player log(Z) log(Z0) log( Z
Z0

)

1. J. Bumrah (IND) −40.2 40.2 0.0

2. P. Cummins (AUS) −92.0 −90.4 -1.6

3. I. Sharma (IND) −270.3 −268.8 -1.5

4. N. Wagner (NZ) −157.3 −155.7 -1.6

5. K. Rabada (SA) −132.9 −129.9 -3.0

6. J. Anderson (AUS) −383.4 −381.9 -1.5

7. T. Southee (NZ) −241.9 −240.1 -1.8

8. J. Hazlewood (AUS) −154.1 −150.8 -3.3

9. J. Pattinson (AUS) −61.6 −60.1 -1.5

10. S. Broad (ENG) −428.0 −426.3 -1.7

11. M. Shami (IND) −148.3 −147.7 -0.6

12. R. Ashwin (IND) −278.7 −275.7 -3.0

13. M. Abbas (PAK) −55.3 −54.4 -0.9

14. T. Boult (NZ) −215.2 −211.7 -3.5

15. M. Starc (AUS) −199.7 −197.1 -2.6

16. B. Stokes (END) −143.1 −140.9 -2.2

17. C. de Grandhomme (NZ) −42.0 −41.3 -0.8

18. S. al Hasan (BAN) −169.3 −166.2 -3.1

19. K. Jarvis (ZIM) −44.7 −45.0 0.3

20. K. Roach (WI) −159.6 −158.6 -1.0

All players −15, 368.3 −15, 260.4 −0.2

This is still a significant step forward in the measurement of bowling ability and analysis of

bowling performances. To date, there exists no method of accurately and fairly accounting for

the quality of opposition batsmen bowled to. The introduction of measurement units such as

standardised and adjusted runs conceded, allows for a more direct means of comparing bowling

abilities and assessing the relative impact of individual bowling performances. As has been

seen in sports such as baseball and basketball, fans are willing to engage with the complexities

of advanced statistics and metrics. However, it is essential that such quantities can be easily

understood and interpreted by viewers of the sport who have minimal formal statistical training.
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3.6 Discussion

3.6.1 Limitations and further work

Employing a Gaussian process to fit the function used to describe a player’s bowling career

trajectory attempts to account for variation in bowling data that may exist on both short

and long-term scales. However, as indicated in Section 3.5, once adjustments to the data

are made to account for the batting abilities of opposition batsmen bowled to, there is an

underwhelming amount of evidence to suggest that bowling ability varies by the same extent as

batting performances, nor does it appear that there are considerable innings and venue-specific

effects.

There are several plausible explanations for the results and findings discussed in this chapter.

Firstly, it is worth acknowledging that the bowling career trajectory was fitted sequentially

after the batting career trajectory model, rather than the other way around. As discussed, this

decision was made as one can expect the variation in batting abilities across teams to be far

greater than the variation in bowling abilities, due to the fact that in most games all players

must bat, while the decision of who bowls is at the discretion of the bowling team’s captain. If

the bowling model was to be fitted prior to the batting model, it is likely that there would be

observable innings and venue-specific effects.

Admittedly, under the current approach, the assumption is made that variation in batting

performances between innings and venues is intrinsically tied to changes in a player’s underlying

batting ability, rather than the opposition’s bowling ability. However, this is a necessary trade-off

that must be made in order to provide a means of accounting for opposition batting strength

when analysing bowling performances. In reality, such differences are likely a result of something

in the middle. Some batsmen really do perform with different levels of ability when playing in and

away from their home country, while some bowlers really are masters of exploiting deteriorating

pitch conditions in the second innings. Likewise, some batsmen have shown time and time again

that they rise to the occasion in their team’s second innings of a match, while many spin bowlers

have been shown to prefer bowling in the sub-continent, be that at a home or away venue. It is

therefore implicit that treating all runs scored equally, rather than all runs conceded, is a more

sensible approach.

Furthermore, while the model uses standardised runs conceded to adjust for the quality of

batsmen bowled to, all wickets taken are treated equally. Instead, it would be advantageous

to incorporate a means of rewarding players who are able to consistently dismiss world-class

batsmen. This may be achieved by estimating the number of runs a bowler has potentially

saved by dismissing a given player. For example, taking the wicket of a tail-end batsman on

a low score is useful, but chances are, that player would not have gone on to score too many
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more runs anyway. On the other hand, dismissing a top-order batsman who already has their

eye in, will be more significant in helping restrict an opposition batting team’s final total.

Such a consideration could also be applied to analysing the impact of individual player fielding

performances. Dropping a tail-end batsman is less likely to have a significant bearing on a

match, whereas dropping a top-order batsman who is currently on a large score may well be a

costly mistake. Such an analysis could even be extended to quantify the effects of contentious or

incorrect umpiring decisions.

Although complex variables such as opposition strength have been accounted for in the

bowling career trajectory model, there are still a number of external factors that can affect

performance that have been ignored. For example, it is well known that pace bowlers are

generally more likely to take wickets at the start of an innings, partially due to the hard, new ball

with which they bowl. While a ball is new, it is more responsive to overhead conditions and will

generate more swing and bounce off the pitch, which usually translates to a more uncomfortable

batting experience. As a ball ages, delivery trajectories becomes easier to predict and therefore

easier for batsmen to safely negotiate. Accounting for an effect due to the age of the ball may

provide additional insight as to the quality of specific bowling performances, particularly for

players who are able to consistently take wickets throughout an innings, regardless of the ball

state.

Finally, unlike the career trajectory model used to measure batting ability in Chapter 2,

the present model applied in a bowling context requires a far richer data set in the form of

ball-by-ball data — rather than simply a list of career performances — in order to be fitted.

Such data is only now becoming readily available to the public via sources such as Cricsheet and

ESPNcricinfo and even then, is only generally accessible for international matches. Furthermore,

the state in which this data is available is not fit for immediate analysis. Instead, users must

be be proficient in a computing language that can wrangle and clean the data into a more

appropriate format before attempting to obtain meaningful insights. Given the sheer quantity of

domestic T20 leagues that have taken over the annual cricketing schedule, it is difficult to see

how significant progress can be made in the field of cricket analytics, until a more public-friendly

means of accessing such data is made available.

3.6.2 Concluding remarks

The bowling career trajectory model proposed in this chapter has presented a framework for

estimating the past, present, and future bowling abilities of professional cricket players. As

discussed, the proposed model does not provide much evidence to suggest that bowling ability

varies significantly over the course of a Test career. It is unclear whether this is simply true

of the data, or is a shortcoming of the Gaussian process used to fit the model. Perhaps the
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implication is that measuring bowling performances using just runs conceded and wickets taken

does not measure the full impact of a player’s bowling efforts. In any case, this may at least

suggest that there is some merit to simply using a player’s standardised career bowling average

or adjusted career bowling average to estimate their true underlying ability.

Rather than measuring bowling performances using multiple measures, runs conceded and

wickets taken, the proposed method of splitting data into runs conceded per bowling spell,

provides a method of visualising performances that previously did not exist. Furthermore,

applying the results of the batting career trajectory model presented in Chapter 2 to the data

provides a means of quantifying the relative strengths of batsmen bowled to, an important factor

that cannot be accurately measured using the traditional bowling average. The introduction and

development of the adjusted bowling average, to measure player bowling ability as if they were

bowling to the average Test batsmen, allows for a fairer comparison of bowling performances

between players. This provides context to certain performances and in some cases can differentiate

between similar sounding bowling figures, which may have occurred in very different match

scenarios.

The findings of the hierarchical analysis indicate that once the relative strengths of opposition

batsmen have been accounted for, there are no clear innings or venue-specific effects that exist

for many players, although an exception may exist here for spin bowlers. Ultimately, this result

suggests that the best course of action is usually to select the strongest performing bowlers,

rather than selecting bowlers that may be thought to suit certain conditions. Of course, this

finding is simply a consideration that should be taken on board by coaches and selectors. All

sports analytics should be used as an additional tool in the selection and strategy-forming

process, rather than a hard and fast rule.

In terms of predicting future bowling performances, the proposed bowling career trajectory

model was found to perform similarly to a constant ability model, which simply assumes a

player’s underlying bowling ability is equivalent to their career standardised average (Table

3.12). This result was supported by the lack of an observable difference between the marginal

likelihoods of the two models presented in Table 3.13. A finding of some interest, consistent with

the results from the batting career trajectory model discussed in Chapter 2, was that using only

a player’s most recent bowling efforts to predict future performance is the least reliable method

of prediction. This again signals that selectors should be cautious in selecting players who have

enjoyed a brief period of good form, but have not typically performed at a consistently high

level.

Finally, the predictions of current player ability have been compared with the ICC ratings

method to gain an understanding of how each method ranks the bowling abilities of individual

players and where the significant differences lie. Generally speaking, there is a reasonable amount
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of agreement between the two methods. However, the bowling career trajectory model provides

estimates of ability in units of an adjusted bowling average, which can be more easily understood

than arbitrary rating points and allows for a more intuitive understanding of the estimated

differences between players. Additionally, as the model has been developed within a Bayesian

framework, it is easy to compare players and provide probability-based estimates relating to the

likelihood of certain players outperforming one another. Once again, the model output lends

itself to practical applications in areas such as team selection policy and talent identification.
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Chapter 4

A simulation-based method of match

outcome prediction

4.1 Introduction

The batting and bowling career trajectory models, presented in Chapters 2 and 3, have been

shown to provide more accurate predictions of individual player ability that typically outperform

traditional measures, such as the batting and bowling average, while maintaining an intuitive

cricketing interpretation. The next natural step is to combine these predictions of player ability

in a manner that allows for the outcome of an upcoming match to be predicted, given two

proposed playing XIs. Regardless of the sport in question, a common outcome when mixing a

data enthusiast’s enjoyment of sport and fascination with numbers, is some form of statistical

model that attempts to predict the outcome of a match. This is no different with cricket. Over

the years there have been multiple attempts at identifying the key factors to cricketing success

and numerous studies that have defined a framework for predicting the outcome of Test, one-day

and T20 cricket.

Interestingly, the most popular method of predicting the outcome of a cricket match is one

that does not market itself as a match predictor — the Duckworth-Lewis-Stern (DLS) method

(Duckworth & Lewis, 1998; Stern, 2016) — used to determine a winner in interrupted one-day

or T20 matches. Where the first innings of a match is prematurely cut short, usually due to

uncontrollable factors such as adverse weather conditions, the DLS method attempts to predict

the score the team batting first would have scored, conditional on the number of wickets and

overs remaining. A somewhat controversial element of the DLS method, is the adjustment made

to account for the fact that the batting team did not know their innings would come to a natural

conclusion. This adjustment has seen multiple changes over the years in an attempt to reflect the

more aggressive nature of the modern game. In the second innings of a match, the DLS method

121
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uses the number of resources remaining to the batting team (balls and wickets remaining), to

provide the current total the chasing team needs to have scored, to be on track to win the

game. This is equivalent to estimating the decision boundary in terms of runs scored, where the

probability of the chasing team winning the match exceeds 50%. An important point of note is

that the DLS method does not take into account the relative strengths of the teams playing in a

match. While this may ultimately reduce the method’s predictive accuracy, it is a necessary

trade-off. The DLS method is used to resolve the outcome of almost all interrupted matches,

from social village cricket to international cricket, therefore, assuming equal team strength is the

only way to ensure fairness in the sense each side has an equal chance of winning a match, prior

to its commencement.

A number of past studies have tended to emphasise outcome prediction in one-day and T20

matches, likely due to the well defined nature of match parameters, such as the number of

overs permitted to be bowled by each side. A multiple linear regression model was employed by

Bailey & Clarke (2006) to predict the outcome of ODI matches, once a game has commenced,

utilising similar concepts as the DLS method, such as resources remaining to the batting team.

Other covariates considered include a home ground advantage effect, as well as country-specific

estimates of past performance at the particular venue and past history between the two competing

nations. A question of interest that underpinned the study was how betting markets tend to

react to significant match events, such as a wicket falling, with a preliminary finding suggesting

that punters overreact to such events. In a similar study, a logistic regression model was used to

identify factors that most affected a team’s probability of winning an ODI match (Bandulasiri,

2008). Home ground advantage was found to be the most significant variable, although a finding

of interest was that winning the coin toss only appears to provide a competitive advantage in

day/night one-day matches, which are partially or wholly played under floodlights.

A more well-known match predictor that has enjoyed some commercial success and TV

airtime, is the winning and score predictor, more commonly referred to as WASP. The WASP

model was born from the PhD thesis of Scott Brooker at the University of Canterbury, New

Zealand (Brooker, 2011) and a later paper concerning the estimation of batting conditions

in ODI cricket (Brooker & Hogan, 2011). The resulting product, WASP, aims to predict the

outcome of one-day and T20 matches by producing two major outputs: (1) in the first innings,

the model estimates the score to be attained by the batting team; and (2) in the second innings,

the model estimates the probability of the batting team successfully chasing the target score.

The model calculations are based on dynamic programming and like the DLS method, consider

variables such as the number of balls and wickets remaining to the batting team. Other factors,

such as the historic scores made at the relevant venue and past performances of teams in similar

match scenarios to the one at the time of prediction, are also accounted for. As with the DLS
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method, WASP does not account for the individual abilities of the players participating in a

match, instead opting to assume equal strengths between teams. This again may weaken the

model’s predictive accuracy, particularly in cases where the batting team has opted to select

an additional batsman or bowler in their lineup, which could significantly increase or reduce

their overall batting strength. However, a benefit of not including such granular estimates of

team and player ability is that the model is computationally undemanding, allowing for the

output to be updated over-by-over, or at times, ball-by-ball, providing real-time updates in

regards to the estimated state of a match. A second notable drawback of the model is the

requirement for a subjective par score to be set prior to the commencement of a match. If this

par score is considerably smaller or larger than the observed first innings total, the estimates of

win probability in the second innings can tend to be a little extreme.

The WASP model made its TV debut in 2012, during a domestic T20 match in New Zealand

and has continued to be used by broadcasters in both New Zealand and England for domestic

and international matches. Unfortunately for those engaged in the field of research in cricket

analytics, the WASP model has made the transition from the realm of academia to commercial

product, limiting the amount of information available in terms of the current methodology. One

can only speculate as to how the present iteration of WASP differs from the initial edition,

however, for now WASP reigns as one of the leading — or at least most popular — methods of

match outcome prediction for the short forms of the game.

Prior to the boom of T20 cricket, a number of attempts were made to apply statistical

modelling to the prediction of match outcomes in Test cricket. Brooks et al. (2002) employed an

ordered probit model to make such predictions, with the ordered responses being win, draw or

loss for a given match. This study considered a number of common cricketing metrics, such as

batting and bowling averages, strike rates and economy rates, to estimate a historic measure

of batting and bowling performance for respective Test playing nations. These performance

measures were then utilised in the model fitting and outcome prediction process. Based on a

data set of 342 Test matches spanning from 1994 to 2000, the model was able to correctly predict

the outcome for an impressive 71.1% of matches. It is worth noting that this rate of successful

prediction is based purely on a training set, as such, the model may not be expected to perform

as well under cross-validation.

More recently, Akhtar & Scarf (2012) applied a multinomial logistic regression model to

predict the probability of a win, draw, or loss, occurring in a given Test match. Here, the

relevant covariates were split into two categories, (1) pre-match effects, and (2) in-game effects.

Pre-match effects include estimates for the respective team strengths, sourced using the ICC

team ratings for Test playing nations; a venue effect, tied to the specific ground; a home ground

advantage effect; and an effect for winning the toss. In-game effects are based on the current
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state of the match, such as the current score or lead held by a team, the number of overs

remaining, the match run rate and the number of wickets remaining for each team across the

match. Unsurprisingly, Akhtar & Scarf (2012) found that pre-match effects are more likely to be

significant predictors of match outcome early in a match, while in-game effects become more

significant as a match progresses. As with a number of previous studies, the estimated strength

of each team is directly related to a team’s past performances, rather than the individual players

taking the field. As such, losing a key player to injury prior to a match would not impact a

team’s overall predicted probabilities of winning, losing or drawing.

The only Test match prediction model to be used in a public broadcast comes from CricViz, a

UK based cricket analytics company, who have aimed to provide an answer to the age old cricketing

question: ‘who’s winning?’. The aptly named WinViz model uses a Monte-Carlo simulator, which

effectively simulates the outcome of a Test match a number of times, given two proposed playing

XIs. However, as the CricViz product has become more popular globally, less and less information

is publicly available in regards to its various models and how they work, including WinViz.

An archived version of the CricViz website from April 2020 (https://web.archive.org/web/

20191203144418/http://cricviz.com/winviz/) provides some information, which can only

be assumed to be somewhat true of the current iteration of WinViz. Here, the WinViz model

claims to account for numerous variables pertaining to a match, including the career records

of all participants, historical data from the venue and country where a match is being played.

Additionally, during the simulation process, WinViz makes adjustments based on individual

players’ career records against pace and spin bowling, a potentially important factor that has

been overlooked by many past studies.

Of concern is the claim: “The mathematics of a batsman’s scores is fairly robust. They obey a

common pattern known as a geometric distribution. If you have a good idea what his underlying

average score will be in a certain innings then you can very accurately predict the probability

of him making any other given score.” The geometric assumption first made by Elderton &

Wood (1945) has since been disproved by multiple papers, in favour of the getting your eye

in hypothesis (A. C. Kimber & Hansford, 1993; Brewer, 2008; Bracewell & Ruggiero, 2009;

Stevenson & Brewer, 2017; Stevenson, 2017), which indicates that the developers of WinViz are

not correctly estimating the underlying batting abilities of individual players during an innings.

While commercial match predictors, such as WASP and WinViz, claim to account for a

multitude of factors, it is difficult to know exactly how each factor is considered in the model.

This is the unfortunate reality of the disjointed nature of statistical applications and algorithms

published in academia and those developed in the commercial business world. When it comes to

promoting software and predictive algorithms, companies will often claim their product offers a

certain functionality, but will not expose themselves to the peer-review process, at risk of losing
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their competitive advantage. Without the public availability of specific details, inner-workings,

or methodology of a product, one must make a subjective judgement as to how much they

can trust a company’s word in regards to the quality of their advertised product. An ongoing

example of this has been provided throughout this thesis with the ICC ratings system.

In this chapter, a simulation-based approach of predicting the outcome of a Test match is

proposed, making use of the individual-specific estimates of batting and bowling ability, based

on the career trajectory models detailed in Chapters 2 and 3. The simulator is built in R (Ihaka

& Gentleman, 1996), as is the code that is used to post-process and analyse the results. As

with the WinViz model, the proposed algorithm is simulation-based, drawing its estimates and

projections of likely results from a number of hypothetical outcomes. Estimates of team batting

and bowling strength are based on the individual players selected to play for each team, rather

than the historic results of the team in question. This allows for an estimate of how a team’s

probability of winning a match is affected by the selection or non-selection of certain players.

In this regard, the match simulator can provide an indication of a player’s likely contribution

towards their team’s success.

The match simulation methodology is comprised of three main elements: (1) simulation

initialisation (Section 4.2.1), (2) simulation processing (Section 4.2.2), and (3) simulation

summary (Section 4.2.3). Each of these sections details the full process used to obtain the

predictions outlining the most likely outcome of a match, from setting up the simulation process,

through to a discussion of how the results can be visualised and used to obtain meaningful

insights. Several real-world applications of the output are presented in Section 4.3, illustrating

the match simulator’s potential for practical use.

4.2 Methodology

4.2.1 Simulation initialisation

Prior to running the match simulator, a number of relevant quantities must be pre-computed

to define the general framework within which Test match cricket is usually played. These

specifications ensure that the simulated matches loosely mimic what may actually occur in

reality. The match simulator is initialised via the initialise simulation() function defined

on the following page, which takes the following input arguments:

• home players - a vector of player names, defining the home team.

• away players - a vector of player names, defining the away team.

• nsims - the number of simulations to be computed.
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## Function that initialises objects required to simulate matches

initialise_simulation <- function(home_players,

away_players,

nsims = 1000)

{

## Get player information and store in a data.frame

match_players <- match_player_info(home_players, away_players)

## Computes career quantities for the defined players

## - E.g. Batting/bowling averages, strike rates/economy rates

averages <- compute_averages(match_players)

## Use historical data to compute empirical probabilities

## of any given event occurring on a given ball, E.g.:

## - Probability of a wicket falling/bowling a wide/hitting a 6

prob_events <- compute_ball_events()

## Get estimates for player batting and bowling ability

player_abilities <- compute_player_abilities(match_players, nsims)

## Compute bowler selection logic for the defined players

bowling_logic <- ai_team_bowling(match_players)

## Initialise storage object for simulation results

results <- vector("list", nsims)

## Return the objects in a list for access

return(list(summary_data = list(prob_events = prob_events,

averages = averages),

match_players = match_players,

player_abilities = player_abilities,

bowling_logic = bowling_logic,

results = results))

}
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The initialise simulation() function pre-computes a number of necessary quantities

that are required in process of simulating a match and are stored in the object summary data.

These estimates include the player-specific values for metrics such as career batting and bowling

averages; strike rates; and economy rates, which will define the tempo at which the match is

likely to be played. Additionally, the empirical probabilities of certain events occurring on any

given delivery are computed, based on historic ball-by-ball data, which in the case of Test match

simulation, is obtained from the Cricsheet data source. As such, when referring to the data of

‘all Test matches’, this really means ‘all Test matches since 2008’. The estimated batting and

bowling abilities of the defined players are stored in the player abilities object, while the

logic of internal processes related to the likelihood of certain players bowling at various stages of

an innings are defined in bowling logic. The resulting output stores the relevant objects in a

list, which can then be accessed and used during each simulation, including a results object,

used to store each simulated result.

Proposed playing XIs

First and foremost, the simulator requires two proposed playing XIs to be defined, either assigning

one team as the home team and the other as the away team; or, indicating the match is to be

played at a neutral venue. To provide a running example of the simulation process throughout

this chapter, a matchup between Australia and New Zealand is simulated using the proposed

lineups defined in Tables 4.1. The hypothetical match is assumed to be taking placed in Australia,

with each team’s lineup based on common selections in their most recent Test matches. A

number of players featured in both Chapters 2 and 3 appear in this matchup.

Once the team lineups are set, including a marker for the home and away team, predictions

for player ability must be obtained. This is achieved by sampling from the posterior predictive

distribution for both the effective batting average, µ(x, t), and standardised effective bowling

average, ω(t), for each player. Each posterior sample will correspond to a player’s assumed

underlying batting and bowling ability for a single simulated match. Therefore, if 1,000

simulations are to be used to estimate the most likely outcome of a match, the algorithm

requires 1,000 posterior samples for µ(x, t) and ω(t), for each player.

In some cases, such as when a player is making their Test debut, players will not have any

Test match batting or bowling data to obtain predictions for batting and bowling ability. In

such instances, there are several options available. One choice is to simply generate estimates for

µ(x, t) and ω(t) using the prior parameter distributions defined in Chapters 2 and 3, which were

shown to be fairly typical of the average player. However, if it is known that a certain player is

coming into a match as a specialist batsman or bowler, these prior distributions can be altered

accordingly, to better reflect their likely underlying abilities. Alternatively, where data exists
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Table 4.1. Proposed playing XIs for Australia and New Zealand, in batting order.

Australia (home) New Zealand (away)

1. David Warner 1. Tom Latham

2. Joe Burns 2. Tom Blundell

3. Marnus Labuschagne 3. Kane Williamson

4. Steve Smith 4. Ross Taylor

5. Matthew Wade 5. Henry Nicholls

6. Travis Head 6. Colin de Grandhomme

7. Tim Paine 7. BJ Watling

8. Pat Cummins 8. Mitchell Santner

9. Mitchell Starc 9. Tim Southee

10. Nathan Lyon 10. Neil Wagner

11. Josh Hazlewood 11. Trent Boult

for a player’s domestic first-class record, estimates for current batting and bowling ability can

be obtained, with a heuristic adjustment made to account for the jump in difficulty between

first-class and Test cricket.

Bowler selection logic

Before a match can be simulated, the logic for several internal processes must be defined, namely,

how the algorithm selects which players will bowl a particular over. This is an important feature

of the match simulator, as it ensures that the proportion of simulated overs bowled by each

player is consistent with historic performances. The proposed logic is defined via a two-step

process, involving an estimate for the average quantity of overs to be bowled by a player and an

estimate for when in an innings these overs are likely to be bowled.

Firstly, an estimate for each player’s bowling workload must be computed, using the player’s

historic bowling career data. Bowling workload is defined as the probability that a player will

bowl any given over. For example, a bowling workload of 20% implies that a player will bowl one

fifth of their team’s overs. The data used to estimate a player’s bowling workload is simply every

ball that a player has been involved with either as a fielder or bowler, during their Test career.

Each ball is assigned an index, I, where I = {1, 2, 3, ..., n}, and a flag indicating whether or not

the player in question was the bowler. This data is then modelled using backward elimination

(Hocking, 1976), via three logistic regression models, presented in Equations 4.1, 4.2, and 4.3, to
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obtain a prediction for a player’s bowling workload, p.

log

(
p

1− p

)
= β0 + β1 × I + β2 × I2 (4.1)

log

(
p

1− p

)
= β0 + β1 × I (4.2)

log

(
p

1− p

)
= β0 (4.3)

This procedure is effectively testing whether or not a player’s bowling workload has remained

constant over their career. Equation 4.1 tests whether there is an observable quadratic relationship

between bowling workload and time, over the course of a player’s career, while Equation 4.2 is

simply testing whether or not bowling workload has remained constant. If neither Equation 4.1

or 4.2 are deemed suitable, a player’s bowling workload is presumed have remained constant

throughout their career, as implied by Equation 4.3.

A practical example is provided in Figure 4.1, where the bowling workload for Neil Wagner

is modelled using Equations 4.1, 4.2, and 4.3. Wagner’s primary role in the New Zealand side is

as a bowler and as such, he has a high average workload of just over 20%, as indicated in Figure

4.1. Here, Equation 4.2 defines the preferred bowling workload model for Wagner, suggesting he

has seen a significant linear increase in bowling workload, as his career has progressed.

Defining bowling workload alone will not quite achieve realistic simulated results. Certain

bowlers and bowler types are known to be more or less likely to bowl at certain stages of an

innings, for example, it is uncommon to see a spin bowler open the bowling. Therefore, estimates

for bowling workload timing, defining when a player is most likely to bowl during an innings,

must also be obtained. Computing the number of occasions a player has bowled the nth over in

an innings provides an understanding of the typical stages of an innings they are brought on

to bowl. Wagner is generally used as a first change bowler by New Zealand, meaning he does

not open the bowling, but is often the first person to bowl after the opening bowlers. This idea

is supported in Figure 4.2, which shows that Wagner has a low probability of bowling in the

first ten overs of an innings, but bowls a lot through the middle overs. The significant drop in

Wagner’s usage around the 80 over mark does not come as a surprise; in Test cricket the bowling

team is given the opportunity to replace the current ball with a new ball every 80 overs. In most

scenarios the new ball is immediately given to a team’s opening bowlers, as pace bowlers tend to

benefit more from a fresh ball than spin bowlers. Therefore, as a first-change bowler, Wagner is

generally given a rest at this point of an innings, to ensure he is ready to bowl with the relatively

new ball around the 90th–100th over mark, immediately following the opening bowlers.

Once estimates of bowling workload and workload timing are obtained for each player, the

probability of any given bowler in a team bowling the nth over of a simulated match can be
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Figure 4.1. Estimated bowling workload for Neil Wagner. Points plotted on the y-axis at values
of 1 indicate balls that were bowled by Wagner, while points plotted on the y-axis at values of
0 indicate balls that were not bowled by Wagner. The model defined by Equation 4.2 (red) is
deemed the most appropriate, indicating Wagner’s general bowling workload has increased since
the early stages of his career.
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Figure 4.2. The proportion of overs bowled by Neil Wagner, by over index, based on the
empirical data. As a low proportion of innings last more than 120 overs, the data at larger over
indexes is sparse and can be highly erratic.
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Figure 4.3. Over-by-over simulated bowling probabilities for players in the proposed lineup for
Australia.

Over index

S
im

ul
at

ed
 b

ow
lin

g 
pr

ob
ab

ili
ty

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 TWM Latham

TA Blundell
KS Williamson
LRPL Taylor
HM Nicholls
C de Grandhomme
BJ Watling
MJ Santner
TG Southee
N Wagner
TA Boult

Figure 4.4. Over-by-over simulated bowling probabilities for players in the proposed lineup for
New Zealand.
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estimated. Figures 4.3 and 4.4 show the respective over-by-over bowling probabilities for the

lineups proposed for Australia and New Zealand in Table 4.1. As the bowling workload timing

can be highly erratic, a locally estimated scatterplot smoother is applied to the estimates to

provide more reasonable values (Cleveland, 1979; Cleveland & Devlin, 1988). Although the plots

are rather cluttered and noisy, several general trends are clear. Pace bowlers who typically open

the bowling for their teams (Mitchell Starc and Josh Hazlewood for Australia; Trent Boult and

Tim Southee for New Zealand) have higher bowling probabilities at the very beginning of an

innings and around the 80th over, when the new ball can be taken.

Conversely, bowling probabilities for spin bowlers Nathan Lyon (Australia) and Mitchell

Santner (New Zealand), are low at the start of an innings, but increase as an innings progresses,

until the 80th over, where a sharp decrease can be observed, due to the new ball being taken.

Finally, a close inspection of Figure 4.3 depicts the increasing probabilities of Australian part-

time bowlers Marnus Labuschange and Travis Head being brought on to bowl, as an innings

progresses. The majority of Test innings are concluded within 120 overs, therefore, where a team

is still batting at this stage of an innings it can be an indication of the bowling team struggling.

In such cases, part-time bowlers are often given the opportunity to bowl several overs to try and

snag a wicket, while giving their strike bowlers a chance to rest.

4.2.2 Simulation process

Once estimates relating to necessary quantities such as player abilities and bowler selection

probabilities have been pre-computed, the requisite framework exists to simulate a match and

predict a possible pathway the proposed match could take. As discussed, a single Test match

consists of up to four innings — two per side — with innings consisting of multiple overs and

each over consisting of six legal balls or deliveries. Accordingly, the process of simulating a

match is broken down into each of these sub-categories, which are discussed below.

Match simulation

Prior to running the simulation for a single match, there is a final step in the initialisation

process, which requires the definition of several global match parameters, outlining the match

conditions under which the simulation will be constrained. These are namely the total number

overs to be bowled in a simulated match and the winner of the toss. In Test match cricket, 90

overs are scheduled to be bowled per day, so the total number of overs to simulate is initialised

at 450. If the result of the toss is unknown then this variable is irrelevant, as teams should be

assumed to have an equal probability of batting or bowling first, unless there is prior knowledge

that one team is more likely to opt to bat or bowl than the other, should they win the toss. Each
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of these match parameters is defined in the initialise match() function, which initialises an

object to store the results of a simulated match. The function takes the following parameters as

input arguments:

• summary data - quantities pre-computed in initialise simulation(), which come in

two categories:

1. prob events - a list of empirical probabilities of any event occurring on a given

delivery, based on the historical ball-by-ball data of all Test matches.

2. averages - a list summarising the career batting averages, batting strike rates, bowling

averages, bowling strike rates, and bowling economy rates, of all players in the match.

The list also contains the mean batting average, batting strike rate, bowling average,

bowling strike rate, and bowling economy, averaged across all Test matches.

• iteration - the simulation iteration number, which is used as an index to select the

appropriate posterior estimates for player batting and bowling abilities that were pre-

computed in initialise simulation().

Two of the more important objects within the object that is created by the initialise match()

function are: (1) match parameters, and (2) innings data. The match parameters object is

a list containing the information relating to the current state of the simulated match, such as

the number of overs remaining, the team that has currently scored more runs (a positive value

for lead deficit indicates the home team is ahead, while a negative value indicates the away

team is ahead), and an empty vector result, to store the result of the simulation once complete.

Note the innings data object is initialised as an empty list, which is populated as the innings

within a match are simulated.

As innings are made up of overs, and overs are made up of six legal balls or deliveries, it is

easier to understand how each of the ball, over and innings simulation processes are inter-related,

by starting with the most repetitive and complex process — the simulation of a single ball or

delivery — and working backwards. To demonstrate the match simulation procedure in its

entirety, consider the proposed lineups for Australia and New Zealand in Table 4.1 and assume

a match simulation object has been initialised using the initialise match() function.
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## Function that initialises the match simulation object

## Initialises the match parameters that store the match-specific

## information relating to the state of the match

## Computes the relevant batting and bowling abilities for all

## players participating in the match

initialise_match <- function(summary_data, match_players,

player_abilities, bowling_logic,

iteration)

{

## Extract player batting and bowling abilities

## for this iteration of the simulated match

match_abilities <- compute_match_abilities(match_players,

player_abilities,

iteration)

## Initialise the match parameters

## toss() randomly assigns home/away team to bat/bowl first

match_parameters <- list(total_overs = 450,

overs_bowled = 0,

balls_bowled = 0,

overs_remaining = 450,

toss = toss(),

lead_deficit = 0,

match_completed = FALSE,

result = character(1))

## Return relevant match data, including the match parameters

return(list(summary_data = summary_data,

match_players = match_players,

match_abilities = match_abilities,

bowling_logic = bowling_logic,

match_parameters = match_parameters,

innings_data = vector("list")))

}
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Ball simulation

To simulate the result of a single delivery, or ball, the match simulator requires just three

arguments: (1) a batsman object, (2) a bowler object, and (3) the pre-computed summary data

object. As shown in Tables 4.2 and 4.3, batsman and bowler objects contain various details

about the players in question and store the player’s current innings-specific performance.

Table 4.2. Elements contained within a batsman object.

Quantity Type Description Initialised value

$name Character Player’s name "DA Warner"

$position Numeric Position in the batting order 1

$runs Numeric Runs scored in innings 0

$balls faced Numeric Number of legal balls faced in innings 0

$ball count Numeric Total number of balls faced in innings 0

$fours Numeric Number of fours scored in innings 0

$sixes Numeric Number of sixes scored in innings 0

$mux Vector µ(x) point estimates [1] 41.42246 [2] 58.43406 ...

$nut Numeric ν(t) point estimate 69.27811

$strike rate Numeric Career strike rate (runs scored per ball) 0.72855

Table 4.3. Elements contained within a bowler object.

Quantity Type Description Initialised value

$name Character Player’s name "TA Boult"

$ball count Numeric Total number of balls bowled in innings 0

$overs Numeric Number of overs bowled in innings 0

$balls Numeric Number of legal balls bowled in current over 0

$maidens Numeric Number of maiden overs bowled in innings 0

$runs conceded Numeric Total runs conceded in innings 0

$standardised runs conceded Numeric Total standardised runs conceded in innings 0

$wickets Numeric Total wickets taken in innings 0

$wt Numeric ω(t) point estimate 0.91231

$economy rate Numeric Career economy rate (runs conceded per ball) 0.49617

Here, the batsman on strike at the beginning of this match is Australian opener David

Warner. In this particular simulation, Trent Boult has been selected to bowl the first over of the

match for New Zealand, which is not a particularly surprising result, given the 46.0% probability

assigned to him bowling the first over, as shown in Figure 4.4. It is possible to observe the

simulation-specific estimates of player batting and bowling ability; in this case, Warner has been

assigned an underlying effective batting average: ν(t) = 69.3, with an estimate µ(0) = 41.4,
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when on a score of 0. Meanwhile, for this simulation Boult has an underlying standardised

effective bowling average: ω(t) = 0.91.

The batsman and bowler objects are parsed to the sim ball() function, which simulates

the outcome of a single ball, based on the estimated abilities of the batsman and bowler. The

process of simulating a ball can be split into two steps:

1. Simulate a main event, which falls into one of three categories:

(a) no wicket event — the batsman is not dismissed and runs may or may not be scored.

(b) bowler wicket event — the batsman is dismissed by the bowler and no runs are

scored.

(c) non bowler event — a batsman is run out and runs may or may not be scored.

2. Given which of main events (a), (b), or (c) occurs, simulate a sub-event :

(a) If main event (a) — simulate how many runs/extras are scored.

(b) If main event (b) — simulate the type of dismissal.

(c) If main event (c) — simulate which batsman is run out and how many runs/extras

are scored.

The empirical probabilities of each main event and sub-event occurring are based on historic

Test data and are provided on the following pages.

$main_events

event prob

no_wicket 0.9838602

bowler_wicket 0.0157042

non_bowler_wicket 0.0004356

$no_wicket_event

runs wicket_type extra_runs extra_type1 extra_type2 prob

0 0 0.7252100

1 0 0.1478854

2 0 0.0369813

3 0 0.0092685

4 0 0.0600162

5 0 0.0001634

6 0 0.0039595

7 0 0.0000029
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$no_wicket_event (continued)

runs wicket_type extra_runs extra_type1 extra_type2 prob

0 1 byes 0.0009386

0 2 byes 0.0004002

0 3 byes 0.0001083

0 4 byes 0.0014181

0 1 legbyes 0.0045560

0 2 legbyes 0.0007424

0 3 legbyes 0.0000754

0 4 legbyes 0.0009831

0 5 legbyes 0.0000068

0 1 noballs 0.0036163

0 2 noballs 0.0000232

0 3 noballs 0.0000106

0 5 noballs 0.0000367

1 1 noballs 0.0006699

2 1 noballs 0.0001798

3 1 noballs 0.0000454

4 1 noballs 0.0003461

6 1 noballs 0.0000126

0 1 wides 0.0020175

0 2 wides 0.0000377

0 3 wides 0.0000164

0 4 wides 0.0000019

0 5 wides 0.0002330

0 5 penalty 0.0000193

1 5 penalty 0.0000039

0 2 byes noballs 0.0000010

0 5 byes noballs 0.0000058

0 2 legbyes noballs 0.0000039

0 5 legbyes noballs 0.0000019

0 6 penalty wides 0.0000010
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$bowler_wicket_event

runs wicket_type extra_runs extra_type1 extra_type2 prob

0 bowled 0 0.1746609

0 caught 0 0.6101623

0 caught and bowled 0 0.0233769

0 hit wicket 0 0.0006056

0 lbw 0 0.1739947

0 stumped 0 0.0171996

$non_bowler_wicket_event

runs wicket_type extra_runs extra_type1 extra_type2 prob

0 run out 0 0.7598253

1 run out 0 0.1834061

2 run out 0 0.0414847

3 run out 0 0.0021834

0 run out 1 legbyes 0.0043668

0 run out 2 legbyes 0.0021834

0 run out 1 noballs 0.0021834

1 run out 1 noballs 0.0021834

2 run out 1 noballs 0.0021834

In order to account for the relative batsman and bowler abilities for a given ball, several

adjustments are made to the empirical main event and sub-event probabilities. The R code

required to simulate the main and sub-event for a single delivery is rather lengthy. As such,

the relevant code has been omitted here and is instead provided in Appendix A. However, the

general procedure using the Warner/Boult matchup as an example is as follows:

1. Obtain an estimate for the expected bowling average (expected bowl average), given the

abilities of the competing batsman and bowler. This is achieved using the estimates for

batsman and bowler ability, µ(x) and ω(t), stored in the batsman and bowler objects.

In this particular simulated match, Warner is estimated to have an underlying effective

average, ν(t) = 69.27811, while Trent Boult is estimated to have an underlying standardised

effective bowling average ω(t) = 0.91231. Note that the estimate for batting ability, µ(x),

is conditional on the batsman’s current score, which in this particular example is 0.

expected_bowl_average <- bowler$wt *

batsman$mux[batsman$current_score - 1]

Here, expected bowl average ≈ 0.91231× 41.42246 ≈ 37.79033, indicating Trent Boult

is expected to concede approximately 37.8 runs to David Warner, on average, for every
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wicket he takes. This estimate assumes that Warner does not get his eye in any further

and is updated each delivery as runs are scored.

2. Obtain an estimate for the bowler’s relative economy rate (relative bowling er) by

comparing the bowler’s career economy rate with the historic Test economy rate.

relative_bowling_er <- bowler$economy_rate /

summary_data$averages$bowling_economy_rate

Here, relative bowling er ≈ 0.49617
0.52057

≈ 0.95312, indicating Trent Boult concedes fewer

runs per ball on average, than the average runs conceded per ball across all Test matches.

3. Obtain an estimate for the batsman’s relative batting strike rate (relative batting sr)

by comparing the batsman’s career batting strike rate with the historic Test batting strike

rate.

relative_batting_sr <- batsman$strike_rate /

summary_data$averages$batting_strike_rate

Here, relative batting sr ≈ 0.72855
0.50989

≈ 1.42886, indicating David Warner scores more

runs per ball on average, than the average runs scored per ball across all Test matches.

This is indicative of Warner’s aggressive batting style, which is one of his well-known traits.

4. Obtain estimates for the expected number of runs conceded per ball (expected rcpb) and

expected number of runs scored per ball (expected rspb), given the specific batsman/bowler

matchup. These quantities account for both the bowler’s career economy rate and the

batsman’s career strike rate. Note that the expected runs conceded per ball includes extras

such as wides and no balls conceded by the bowler, while the expected runs scored per

ball only measures runs scored by the batsman and assumes that wides and no balls are

bowled at a constant rate, regardless of the bowler.

## Expected runs conceded per ball by the bowler

expected_rcpb <- summary_data$averages$bowling_economy_rate *

relative_bowling_er * relative_batting_sr

## Expected runs scored per ball by the batsman

## Computing the difference between the historical runs

## conceded per ball and runs scored per ball implies that

## wides and no balls are bowled at the same rate,

## regardless of the bowler

expected_rspb <- expected_rcpb -

(summary_data$averages$runs_conceded_per_ball -

summary_data$averages$runs_scored_per_ball)
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Here, expected rcpb ≈ 0.52057 × 0.95312 × 1.42886 ≈ 0.70895, and expected rspb

≈ 0.70083. This suggests Trent Boult is likely to concede more runs per ball than he has

over the course of his career (0.49617), given Warner’s generally aggressive approach to

batting. However, this result also suggests Boult is likely to restrict Warner to a lower

strike rate than his career strike rate (0.72855).

5. Obtain an estimate for the bowler’s expected bowling strike rate (expected bowler sr),

given the specific batsman/bowler matchup, representing the average number of balls to

be bowled, per wicket taken.

expected_bowler_sr <- expected_bowl_average / expected_rcpb

Here, expected bowler sr ≈ 37.79033
0.70895

≈ 53.30465, indicating that Trent Boult is expected

to dismiss David Warner every 53.3 deliveries, on average, assuming Warner does not get

his eye any further.

6. Obtain an estimate for the relative bowling strike rate (relative bowler sr), given the

specific batsman/bowler matchup, by comparing the expected bowling strike rate with the

historic Test bowling strike rate.

relative_bowler_sr <- expected_bowler_sr /

summary_data$averages$bowling_strike_rate

Here, relative bowler sr ≈ 53.30465
63.2216

≈ 0.84314, indicating that the expected bowling

strike rate (expected bowler sr) for the proposed batsman/bowler matchup is lower than

the historic Test bowling strike rate.

7. Adjust the empirical probabilities of each different main event occurring, to account for

the relative abilities, strike rates, and economy rate of the specific batsman and bowler,

using the quantities computed in (1) to (6).

(a) Adjust the probability of a bowler-credited wicket event (bowler wicket event)

occurring, ensuring that wickets fall, on average, at the expected bowling strike rate

(expected bowler sr) defined in (5). This is achieved by converting the empirical

probability of a bowler-credited wicket occurring into odds, then, multiplying these

odds by the inverse of the relative bowling strike rate (relative bowler sr). These

odds are then backtransformed to obtain the adjusted probability of a bowler credited

wicket occurring on a single ball, given the batsman/bowler-specific matchup. This

has the effect of decreasing the likelihood of a bowler-credited wicket occurring if

the relative bowling strike rate is greater than 1, and increasing the likelihood of a

bowler-credited wicker occurring if the relative bowling strike rate is less than 1.
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## Initialise the probability of a bowler credited wicket

## occurring using the empirical data

bowler_wicket_prob <-

subset(summary_data$prob_events$events,

event == "bowler_wicket_event")$prob

## Convert probabilities into odds

bowler_wicket_odds <- bowler_wicket_prob / (1 - bowler_wicket_prob)

## Adjust the odds using the relative bowling strike rate

bowler_wicket_odds <- bowler_wicket_odds * (1 / relative_bowler_sr)

## Convert odds back to probability to get the adjusted

## probability of a bowler-credited wicket event occurring

bowler_wicket_prob <- bowler_wicket_prob / (1 + bowler_wicket_odds)

The relative bowling strike rate computed in (6), relative bowler sr ≈ 0.84314,

and the empirical probability of a bowler-credited wicket occurring on any given

delivery is 0.0157, or 1.57%. After adjustment, the probability of a bowler-credited

wicket event occurring is estimated to be equal to 0.0186, or 1.86%.

(b) After adjusting the probability of a bowler-credited event occurring, the total prob-

ability of all three different main events will no longer sum to 1. The assumption

is made that the probability of a run out occurring (non bowler wicket event) is

constant, regardless of the batsman currently at the crease and the bowler in question.

While it is possible that certain players may have an increased likelihood of being

involved in a run out, the empirical probability of a run out occurring in the first

place is so small that such effects are unlikely to have a meaningful impact on the

outcome of a ball. Therefore, given the necessary condition defined in Equation 4.4,

the probability of a non-bowler-credited wicket occurring is adjusted accordingly to

satisfy this requirement.

P (no wicket event) + P (bowler wicket event) + P (non bowler wicket event) = 1 (4.4)

## Empirircal probability of a non-bowler-credited wicket

## event (run out) occurring

non_bowler_wicket_prob <-

subset(summary_data$prob_events$events,

event == "non_bowler_wicket_event")$prob
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## Adjust the probability of a non-wicket taking event

## occurring to ensure all main event probabilities

## sum to 1

no_wicket_prob <- bowler_wicket_prob - non_bowler_wicket_prob

Therefore, the adjusted probabilities of each of the main events no wicket, bowler wicket,

and non bowler wicket occuring are 0.9810, 0.0186, and 0.0004 respectively, or, 98.10%,

1.86%, and 0.04%.

8. Adjust the probabilities of the run scoring sub-events contained in the

no wicket event object.

(a) Compute the adjustment factor. This quantity represents the factor by which

the probability of run scoring sub-events occurring must be multiplied, to ensure

that on average: (i) the bowler will take wickets at an expected bowling average

(expected bowl avarage) equivalent to the quantity defined in (1); (ii) runs will be

conceded by the bowler at a rate equivalent to the expected number of runs conceded

per ball (expected rcpb), defined in (4); and (iii) runs will be scored by the batsman

at a rate equivalent to the expected number of runs scored per ball (expected rspb),

defined in (4).

## Before adjusting the run scoring sub-events, this many

## runs are expected to be scored per ball by the batsman

current_rspb <- sum(no_wicket_prob * no_wicket_event$runs *

no_wicket_event$prob) +

sum(non_bowler_wicket_prob *

non_bowler_wicket_event$runs *

non_bowler_wicket_event$prob)

## Compute the adjustment factor

adjustment_factor <- expected_rspb / current_rspb

To compute the adjustment factor, one must first calculate the expected number

of runs scored per ball by the batsman using the empirical sub-event probabilities

and the adjusted main event probabilities, defined in (7). Assuming that the rate

at which wides and no balls are bowled is constant, regardless of the bowler, the

adjustment factor is then equal to expected rspb

current rspb
.

Here, the adjustment factor ≈ 0.70083
0.50724

≈ 1.38165.
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(b) Adjust the probability of run scoring sub-events accordingly.

## Use the adjustment factor to adjust probabilities of

## run scoring sub-events occurring, conditional on

## batting strike rate and bowling economy rate

no_wicket_event[no_wicket_event$runs > 0, ]$prob <-

no_wicket_event[no_wicket_event$runs > 0, ]$prob *

adjustment_factor

## Normalise the sub-event probabilities to sum to 1

no_wicket[no_wicket$runs == 0, ]$prob <-

no_wicket[no_wicket$runs == 0, ]$prob /

sum(no_wicket[no_wicket$runs == 0, ]$prob) *

(1 - sum(no_wicket[no_wicket$runs > 0, ]$prob))

Given the adjustment factor ≈ 1.38, the likelihood each of the run scoring sub-events

within the no wicket event object occuring are increased by a factor of 1.38 for this ball.

How this process accurately accounts for various factors, such as batting and bowling abilities;

strike rates; and economy rates, is not immediately intuitive. Several assumptions are made,

such as the constant rate at which wides and no balls are bowled, regardless of the bowler,

and the rate at which runs out occur, regardless of the batsmen. Admittedly, a number of the

adjustments made to the probabilities are heuristic in nature, however, it is possible to show via

a simulation study that this approach, on average, does result in simulations that converge to

expected results.

From this point, the simulation of a ball is straightforward; a main event and corresponding

sub-event are simulated using the adjusted probabilities computed using the process defined in

(1) to (8). The result of a simulated ball bowled by Trent Boult to David Warner is computed

below using the sim ball() function, defined in Appendix A. A logical, user-defined argument,

ball output, provides a user with the option to print the results of a the ball to be to screen.

Here, the simulated ball bowled by Trent Boult to David Warner, has resulted in Warner scoring

1 run.

General logic checks are then performed to test for various scenarios. For example: Was

the ball a legal delivery? Did the batsmen rotate the strike? If there was a run out, which

batsman is out? The relevant output is then used to update the batsman and bowler objects

accordingly, to prepare the simulation for the next simulated ball. The results of each delivery

are ultimately uploaded to the respective batting and bowling scorecard objects, contained

within the innings data object. In a batting context, information such as runs scored, balls
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faced and strike rate is stored, while in a bowling context the number of overs bowled, runs

conceded, standardised runs conceded and wickets taken is recorded.

## Simulate the first ball of the proposed Australia vs. NZ match,

## bowled by Trent Boult to David Warner

sim_ball(summary_data, innings_data, ball_output = TRUE)

TA Boult to DA Warner. 1 run.

$simulated_main_event

event prob

no_wicket 0.98099

$simulated_sub_event

runs wicket_type extra_runs extra_type1 extra_type2 prob

1 0 0.20433

match_data$innings_data[[1]]$batting$scorecard

batsman runs BF SR out how_out bowler

DA Warner 1 1 100.0 FALSE

JA Burns 0 0 0.0 FALSE

M Labuschagne 0 0 0

SPD Smith 0 0 0

MS Wade 0 0 0

TM Head 0 0 0

TD Paine 0 0 0

PJ Cummins 0 0 0

MA Starc 0 0 0

NM Lyon 0 0 0

JR Hazlewood 0 0 0

extras 0

total 1

match_data$innings_data[[1]]$bowling$scorecard

bowler overs balls maidens runs standardised_runs wickets

TA Boult 0 1 0 1 0.02414 0
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Over simulation

With the simulation process of an individual ball or delivery now defined, the simulation of

an over — consisting of six legal balls — is relatively easy. The ball simulation process is

simply repeated until either: (1) six legal balls are bowled, (2) the bowling team takes 10

wickets, concluding the batting team’s innings, or (3) the batting team reaches the target score,

concluding the match. A single over is simulated using the sim over() function (defined in

Appendix A), which includes a user-defined argument that allows the output of a simulated over

to be printed to screen, including the bowler’s figures and batsman scores at the conclusion of

the over.

Here, the first over of the simulated match between Australia and New Zealand has been

rather eventful. David Warner was able to get off the mark immediately, Joe Burns was bowled

out for a duck and Marnus Labuschange scored a boundary from his first delivery faced. The

batting and bowling scorecard objects are then updated accordingly to reflect the events of the

simulated over. Note that the bowling scorecard object records the number of runs conceded in

both units of runs and standardised runs conceded, which allows for a fairer and more accurate

means of comparing simulated bowling performances in the post hoc analysis of the entire

simulation process.

## Simulate the first over of the proposed Australia vs. NZ match,

## to be bowled by Trent Boult

sim_over(match_data,

match_parameters,

innings_data,

over_output = TRUE,

ball_output = TRUE)

TA Boult to DA Warner. 1 run.

TA Boult to JA Burns. 0 runs + 2 leg byes.

TA Boult to JA Burns. 0 runs.

TA Boult to JA Burns. 0 runs.

TA Boult to JA Burns. 0 runs. OUT, bowled.

TA Boult to M Labuschange. 4 runs.

Overs bowled = 1. Runs scored from over = 7. Score = 7/1.

DA Warner 1, M Labuschagne 4.

TA Boult: 1/5 (1)
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match_data$innings_data[[1]]$batting$scorecard

batsman runs BF SR out how_out bowler

DA Warner 1 1 100.0 FALSE

JA Burns 0 4 0.0 TRUE bowled TA Boult

M Labuschagne 4 1 400.0 FALSE

SPD Smith 0 0 0

MS Wade 0 0 0

TM Head 0 0 0

TD Paine 0 0 0

PJ Cummins 0 0 0

MA Starc 0 0 0

NM Lyon 0 0 0

JR Hazlewood 0 0 0

extras 2

total 7

match_data$innings_data[[1]]$bowling$scorecard

bowler overs balls maidens runs standardised_runs wickets

TA Boult 1 0 0 5 0.09845 1

Innings simulation

Now, with the simulation process of both individual balls and overs being clearly defined, the

simulation of an entire innings is not difficult. Overs are simulated until: (1) the bowling team

has taken 10 wickets, concluding the batting team’s innings, (2) the batting team reaches the

target score, concluding the match, or (3) the total number of overs to be bowled in the match

is reached, concluding the match in a draw.

There is one further scenario in which a team’s innings can be concluded. In Test cricket, it

is occasionally advantageous to the batting team to end their innings prematurely — known as

declaring an innings — in order to achieve victory before a match is deemed drawn after 5 days

without a result (or in the case of the match simulator, 450 overs). To mimic the concept of

declaring an innings, some logic has been built in to the innings simulation process, allowing for

declarations in the third innings in cases where the batting team would set a significant and

presumably unattainable target to win the match, given the number of overs remaining. This

prevents the batting team in the simulated match from continuing to bat and wasting time that

could otherwise be used to bowl the opposition out and win the match.

The method used to implement declarations is fairly rudimentary. Given the number of overs

remaining in a match, subjective estimates were made in regards to the minimum lead a team
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batting in the third innings would require before considering a declaration. Such estimates were

made conditional on 10, 45, 90, 135, 180, 225 and 270 overs remaining in a match, with the lower

and upper limits for these subjective estimates presented in Figure 4.5. The estimates are based

on both the author’s extensive experience of spectating Test cricket and historical Test records.

For example, the highest target ever set is 742, imposed by England against Australia in 1928,

therefore, the upper limit for the lead a team would require before considering a declaration

with 270 overs remaining (3 days), is set at 750. Similarly, as the highest target successfully

chased in the fourth innings is 418 by the West Indies versus Australia in 2003, the lower limit

with 270 overs remaining is estimated to be a lead of 450 runs, which history would suggest is a

large enough lead to guarantee victory.

In order to provide a framework to the logic governing declarations, the linear equation

defined in Equation 4.5 is fitted to define the decision boundary for a third innings declaration,

conditional on the current lead and number of overs remaining in the match. This function

errs on the side of conservatism and rather crude, however, it does at least result in somewhat

sensible declarations in simulated matches where one team is particularly dominant.

P (Declaration) =

0, if current lead < 150 + 2× overs remaining

1, if current lead ≥ 150 + 2× overs remaining
(4.5)

In reality, a captain’s decision to declare an innings is based on a far greater number of

external factors beyond the number of overs remaining in a match. The amount of assistance

the pitch is likely to offer bowlers and the number of runs scored in the match thus far, are both

of worthwhile consideration, as is the forecasted weather, which can be unpredictable at the

best of times. If the outcome is being predicted for a match that has already commenced, it

is possible to recode the declaration logic to account for the state of the pitch and upcoming

weather. Often, commentators and seasoned spectators alike will be able to get a feel for when

a declaration is coming and will generally be in the ballpark in terms of the current lead and

number of overs remaining at the time of a declaration.

Considering the various conditions that can lead to the conclusion of a simulated innings,

logical checks are made at the end of each over to ensure none of these conditions have been met.

A new bowler is then selected to bowl the next over, using the bowler selection logic defined

when the simulation was initialised. This method of bowler selection can be a little unrealistic

compared to what generally occurs in the Test cricket arena. Given the way the bowling logic

has been defined, bowlers will rarely bowl long spells of seven or eight consecutive overs. While

this does not have a significant effect on the likely overall outcome of a match, it does detract

from the realism of the simulation. There may be a slight bias introduced as a result of the
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Figure 4.5. Subjective estimates for the minimum lead required before the team batting in
the third innings would consider a declaration. The grey area depicts the range of values in
which team’s may consider declaring their third innings, conditional on their current lead and
the number of overs remaining. The blue line represents the conservative declaration decision
boundary that loosely fits these subjective assessments.

bowler selection method, as there is no means of recording bowler fatigue. It is entirely possible

that pace bowlers will be simulated to bowl unrealistically long spells of more than 10 overs,

which rarely occurs in reality. However, while this may happen on the odd occasion, it should

not have a particularly large impact across a large number of simulated matches.

An innings can be simulated using the sim innings() function, which again has a user-

defined option to print the results of the simulated innings to screen. Finally, an entire match can

then be simulated using the sim match() function, which employs the use of the sim ball(),

sim over(), and sim innings() functions that have been defined in Appendix A. The result of

the match is then stored inside a simulation object, sim, containing the scorecard objects and

match results for all simulated matches. The resulting output from the four simulated innings

for the proposed matchup between Australia and New Zealand is provided below, along with the

relevant batting and bowling scorecard objects.
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## Simulate the proposed Australia vs. NZ match

sim_match(summary_data, match_players, bowling_logic, iteration = 1,

match_output = TRUE, innings_output = TRUE,

over_output = FALSE, ball_output = FALSE)

First innings.

Batting team: Australia. Score: 300/10 (86.2)

Second innings.

Batting team: New Zealand. Score: 298/10 (106.4)

Third innings.

Batting team: Australia. Score: 331/10 (107.0)

Fourth innings.

Batting team: New Zealand. Score: 121/10 (40.1)

Result: Australia win by 212 runs.
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## First innings batting scorecard

match_data$innings_data[[1]]$batting$scorecard

batsman runs BF SR out how_out bowler

DA Warner 5 4 125.0 TRUE bowled TG Southee

JA Burns 0 4 0.0 TRUE bowled TA Boult

M Labuschagne 65 126 51.6 TRUE caught TA Boult

SPD Smith 126 210 60.0 TRUE run out

MS Wade 6 9 66.7 TRUE caught TA Boult

TM Head 0 10 0.0 TRUE caught TG Southee

TD Paine 0 6 0.0 TRUE caught MJ Santner

PJ Cummins 4 6 66.7 TRUE lbw TG Southee

MA Starc 56 95 58.9 TRUE lbw TA Boult

NM Lyon 2 4 50.0 TRUE caught N Wagner

JR Hazlewood 28 49 57.1 FALSE

extras 8

total 300

## First innings bowling scorecard

match_data$innings_data[[1]]$bowling$scorecard

bowler overs balls maidens runs standardised_runs wickets

TA Boult 22 2 3 74 2.40981 4

TG Southee 16 0 3 49 1.29413 3

C de Grandhomme 14 0 1 47 0.78477 0

N Wagner 19 0 1 69 1.89104 1

MJ Santner 15 0 3 54 1.41593 1

In the first innings, Australia is simulated to be bowled out for 300, after 86.2 overs. Only

four Australians managed to make it to double figures, with a top score of 126 by Steve Smith

and handy contributions down the order from Mitchell Starc and Josh Hazlewood. Pace bowlers

Trent Boult and Tim Southee are the star performers here for New Zealand, finishing with

figures of 4/74 and 3/49 respectively.
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## Second innings batting scorecard

match_data$innings_data[[2]]$batting$scorecard

batsman runs BF SR out how_out bowler

TWM Latham 1 8 12.5 TRUE caught MA Starc

TA Blundell 11 30 36.7 TRUE lbw JR Hazlewood

KS Williamson 82 143 57.3 TRUE caught MA Starc

LRPL Taylor 0 5 0.0 TRUE bowled MA Starc

HM Nicholls 1 5 20.0 TRUE lbw NM Lyon

C de Grandhomme 32 37 86.5 TRUE caught JR Hazlewood

BJ Watling 77 252 30.6 TRUE caught NM Lyon

MJ Santner 29 99 29.3 TRUE caught JR Hazlewood

TG Southee 4 5 80.0 TRUE caught JR Hazlewood

N Wagner 25 29 86.2 TRUE caught MA Starc

TA Boult 12 29 41.4 FALSE

extras 24

total 298

## Second innings bowling scorecard

match_data$innings_data[[2]]$bowling$scorecard

bowler overs balls maidens runs standardised_runs wickets

JR Hazlewood 22 0 6 67 3.75268 4

MA Starc 21 0 2 79 2.79865 4

PJ Cummins 25 0 6 62 2.58381 0

NM Lyon 19 4 9 41 1.83603 2

M Labuschagne 8 0 2 23 0.73933 0

SPD Smith 1 0 0 9 0.44601 0

In the second innings, New Zealand are simulated to reply with a score of 298 all out after

106.4 overs, behind scores of 82 and 77 from Kane Williamson and BJ Watling, leaving them

trailing by just two runs at the halfway point of the match. Opening bowlers Josh Hazlewood

and Mitchell Starc have done most of the damage in this innings for Australia, each capturing

four wickets.
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## Third innings batting scorecard

match_data$innings_data[[3]]$batting$scorecard

batsman runs BF SR out how_out bowler

DA Warner 18 28 64.3 TRUE caught C de Grandhomme

JA Burns 113 204 55.4 TRUE caught C de Grandhomme

M Labuschagne 17 38 44.7 TRUE bowled N Wagner

SPD Smith 37 100 37.0 TRUE caught TG Southee

MS Wade 42 81 51.9 TRUE run out

TM Head 1 10 10.0 TRUE lbw N Wagner

TD Paine 23 39 59.0 TRUE caught MJ Santner

PJ Cummins 34 83 41.0 TRUE bowled C de Grandhomme

MA Starc 23 21 109.5 TRUE caught MJ Santner

NM Lyon 2 28 7.1 TRUE caught MJ Santner

JR Hazlewood 7 13 53.8 FALSE

extras 14

total 331

## Third innings bowling scorecard

match_data$innings_data[[3]]$bowling$scorecard

bowler overs balls maidens runs standardised_runs wickets

TA Boult 21 0 3 61 3.52618 0

C de Grandhomme 15 0 6 25 0.68892 3

TG Southee 23 0 4 73 1.91672 1

N Wagner 23 0 2 92 3.37100 2

KS Williamson 1 0 0 6 0.19223 0

MJ Santner 24 0 4 64 2.48146 3

A solid third innings total of 331 is simulated for Australia, leaving New Zealand a significant,

but attainable target of 334 runs to win the match. The Australian innings is underpinned by a

century from opening batsman Joe Burns, who bounces back after being dismissed for a duck

in the first innings. Colin de Grandhomme and Mitchell Santner star with the ball here, each

picking up three wickets.
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## Fourth innings batting scorecard

match_data$innings_data[[4]]$batting$scorecard

batsman runs BF SR out how_out bowler

TWM Latham 25 55 45.5 TRUE caught NM Lyon

TA Blundell 7 18 38.9 TRUE caught JR Hazlewood

KS Williamson 0 2 0.0 TRUE caught MA Starc

LRPL Taylor 34 32 106.3 TRUE caught JR Hazlewood

HM Nicholls 16 47 34.0 TRUE lbw JR Hazlewood

C de Grandhomme 2 5 40.0 TRUE bowled MA Starc

BJ Watling 19 43 44.2 TRUE caught MA Starc

MJ Santner 5 20 25.0 TRUE lbw NM Lyon

TG Southee 0 1 0.0 TRUE lbw MA Starc

N Wagner 7 18 38.9 FALSE

TA Boult 0 1 0.0 TRUE caught PJ Cummins

extras 6

total 121

## Fourth innings bowling scorecard

match_data$innings_data[[4]]$bowling$scorecard

bowler overs balls maidens runs standardised_runs wickets

JR Hazlewood 10 0 3 20 1.22214 3

PJ Cummins 13 0 2 39 1.43100 1

MA Starc 10 0 2 34 2.94788 4

NM Lyon 7 1 2 24 1.12086 2

The fourth innings sees New Zealand collapse for 121, losing the match by 212 runs. There

is certainly no denying that this simulated match has produced an objectively realistic looking

result. In fact, despite being a simulated match, for patriotic New Zealand fans this result is

eerily similar to a number of recent real-life performances against trans-Tasman rivals Australia,

where New Zealand appears to be competitive for the majority of the match, only to collapse

spectacularly at the final hurdle.

4.2.3 Simulation summary

The procedure of simulating a single match, detailed in Section 4.2.2, is repeated multiple times

in order to gain a deeper understanding of possible match outcomes. The results of each of these

simulations are saved in a simulation object, including the performances of individual players in

each of the simulated matches. It is then possible to post-process the results of the simulated
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matches, to gain a deeper understanding of the likely performances of each player. Here, the

simulated results for the proposed match between Australia and New Zealand are discussed. In

order to estimate the effect home ground advantage may have on the matchup, the simulation is

run twice, with each nation given the opportunity to play as the home and away team.

Of primary interest is the most likely outcome of the match, given the two proposed playing

XIs. Here, the matchup is simulated 1,000 times with Australia as the home nation, and 1,000

times with New Zealand as the home nation. The summary of the simulated results is provided

in Figure 4.6 and suggests that home ground advantage is indeed a significant factor in this

matchup. It goes without saying that these estimates are subject to some uncertainty, given they

are obtained from a simulation-based process. However, re-running the simulator with 1,000

iterations typically yields estimates within approximately 2% of one another.

30.8%
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0.1%
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Australia vs. New Zealand

(a)

34%

5.5%

60.5%
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New Zealand vs. Australia

(b)

Figure 4.6. (a) Summary of simulated match outcomes with Australia as the home nation. (b)
Summary of simulated match outcomes with New Zealand as the home nation.

Overall, Figure 4.6 suggests Australia is the slightly stronger team, given the marginally

higher win probability estimates across the two scenarios, although on the whole, this appears

to be a fairly even contest. Interestingly, one of the 1,000 simulated matches with Australia as

the home nation ended in a tie, an incredibly rare result, which has only occurred twice since

the first Test was played in 1877. It is worth noting that the estimated probability of a draw

occurring is likely lower than the actual likelihood of a draw, as these estimates ignore variables

such as the weather, which is usually the main contributing factor in cases where Test matches

end without a victor.
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Table 4.4. Summary of simulated batting performances for each player in the proposed Australia
versus New Zealand matchup. The first section of results summarises simulated batting perfor-
mances where the home team is Australia, while the second section of results summaries simulated
batting performances where the home team is New Zealand. The expected batting average for
each player in the proposed matchup provides an indication of how well each player is expected
to perform with the bat, given the bowlers they are likely to face, while the simulated average
summarises each player’s actual batting performances across all simulated matches and illustrates
the amount of noise present in the simulation process. The posterior predictive estimate for each
player’s effective batting average, ν(t), excluding any innings and venue-specific effects, is also
provided for reference.

AUS vs. NZ NZ vs. AUS

Batsman ν(t) Expected Simulated Expected Simulated

David Warner 47.9 49.2 48.1 29.2 29.9

Joe Burns 35.0 26.4 26.1 25.2 24.9

Marnus Labuschange 55.8 50.5 48.0 40.5 37.9

Steve Smith 57.9 47.7 49.5 42.7 42.9

Matthew Wade 34.1 28.3 27.9 25.3 24.9

Travis Head 38.1 33.7 32.7 24.9 24.6

Tim Paine 30.6 23.1 22.9 23.0 23.6

Pat Cummins 16.3 13.2 12.9 9.7 9.6

Mitchell Starc 23.3 17.9 17.6 16.6 15.8

Nathan Lyon 13.0 11.2 10.8 9.6 9.5

Josh Hazlewood 13.5 9.9 10.0 8.7 8.2

Tom Latham 40.8 26.8 26.4 34.0 33.5

Tom Blundell 43.6 35.0 34.0 34.9 34.3

Kane Williamson 47.8 31.5 31.8 37.1 37.3

Ross Taylor 43.5 30.1 29.6 38.0 37.7

Henry Nicholls 37.7 24.6 24.5 31.8 31.1

Colin de Grandhomme 34.0 22.5 22.5 34.8 35.5

BJ Watling 38.1 27.3 26.3 27.5 26.7

Mitchell Santner 25.4 17.1 17.4 23.1 22.4

Tim Southee 17.8 13.4 13.6 16.1 15.8

Neil Wagner 12.7 8.9 9.1 10.7 10.7

Trent Boult 18.4 10.5 10.5 15.6 15.2
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Table 4.5. Summary of simulated bowling performances for players in the proposed Australia
versus New Zealand matchup who are expected to have a bowling workload ≥ 2%. The first section
of results summarises simulated bowling performances where the home team is Australia, while
the second section of results summaries simulated bowling performances where the home team is
New Zealand. The expected bowling average for each player in the proposed matchup provides
an indication of how well each player is expected to perform with the ball, given the batsmen
they are likely to bowl to, while the simulated average summarises each player’s actual bowling
performances across all simulated matches and illustrates the amount of noise present in the
simulation process. The posterior predictive estimate for each player’s adjusted effective bowling
average, α(t), excluding any innings and venue-specific effects, is also provided for reference.

AUS vs. NZ NZ vs. AUS

Bowler α(t) Expected Simulated Expected Simulated

Marnus Labuschange 45.2 35.3 34.8 38.5 39.5

Steve Smith 53.9 48.9 59.7 41.5 52.6

Travis Head 55.9 38.5 44.4 50.3 54.3

Pat Cummins 25.1 20.2 20.0 25.9 25.9

Mitchell Starc 29.8 23.1 23.6 29.9 29.3

Nathan Lyon 33.8 29.1 28.9 33.2 33.6

Josh Hazlewood 28.0 21.1 21.0 27.1 25.7

Colin de Grandhomme 31.1 30.4 31.5 29.2 29.6

Mitchell Santner 44.4 53.2 50.6 34.3 33.1

Tim Southee 27.7 28.2 27.5 22.1 22.3

Neil Wagner 25.8 25.3 24.7 22.7 22.3

Trent Boult 29.7 31.5 31.1 23.6 22.8

As discussed in Section 4.2.2, the simulation process saves the individual player performances

in every simulated match. Averaging these performances across all simulations provides an

indication of the batting and bowling performances one should expect from each player, which are

presented in Tables 4.4 and 4.5. The expected average signifies how well the player is expected to

perform in the match, on average, while the simulated average summarises the player’s simulated

performances. Comparing the differences between expected and simulated averages provides

a rough indication of the amount of variation present in the simulation process. Over a large

enough sample of simulations, the expected and simulated averages should converge with one

another.

It is clear from the results in Tables 4.4 and 4.5 that the majority of players in the proposed

matchup prefer playing in a home environment. This appears to be particularly true for a
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number of Australian batsmen and is universal across all bowlers, with the possible exception of

Steve Smith and his part-time leg spin bowling. The results appear to suggest that Australia are

particularly reliant on batting performances from the trio of David Warner, Marnus Labuschagne,

and Steve Smith — all players who were ranked in the current world top 10 Test batsmen in

Chapter 2 — whereas New Zealand appears to have a more balanced batting lineup and may be

more likely to see meaningful batting contributions from a larger number of players.

Furthermore, it is interesting to note that the majority of the predicted expected batting

averages are lower than the posterior predictive estimates for a player’s effective batting average,

ν(t). However, after considering the quality of bowlers participating in the match, this result

becomes less surprising. Each side boasts three world-class pace bowlers, who in Chapter 3 were

ranked among top 20 bowlers in the world at present. As a result, the simulation results indicate

— perhaps rightly so — that this matchup is likely to be dominated by the bowlers.

4.3 Practical applications

While the simulation results presented in Section 4.2.3 may be of interest to the general cricketing

community, it is worthwhile to consider how this type of output can add value to one’s cricket

viewing experience, or, used to gain a competitive advantage over an opposition. As such, there

are two main areas where the match simulator has been identified to have practical implications:

(1) a broadcasting or public interest perspective, and (2) a high performance or private interest

perspective, which are discussed in Sections 4.3.1 and 4.3.2 respectively.

4.3.1 ‘Who’s winning?’

At some point of their lives, many fans of Test cricket will have been asked the exasperating

question: ‘who’s winning?’, by an earnest bystander attempting to feign interest in a sporting

contest that can drag on for five days, with the players breaking for a drink and meal every

couple of hours. Such a question often results in the inquisitor being chastised with a drawn-out

sermon, detailing the various intricacies of Test cricket, hypothetical scenarios, and why there is

no simple way of determining which team is going to win this early on in a match. In this regard,

the author speaks from a position of great experience and authority. The output obtained from

the match simulator attempts to provide some clarity to this question and to save onlookers the

embarrassment of making such an egregious query.

As discussed in Section 4.2, the match simulator can be used to provide a pre-match prediction

in an attempt to gain an understanding of what the most likely outcome of a match may be. In

Section 4.2.3, Australia were predicted to have a pre-match probability of winning of roughly
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61% in matches that were to be played in Australia, as shown in Figure 4.6. Already, a less

knowledgeable observer can infer that Australia are the favourites to win the match, given their

playing XI, the opposition team and their home ground advantage.

Now, consider the particular simulation discussed in Section 4.2.2. Here, after one day (90

overs) of simulated play, Australia had been bowled out for 300 and New Zealand were 12/1 in

reply. At the close of play on day two of the simulated match, New Zealand were on a score of

240/8, trailing Australia by 60 runs. By the end of day three, Australia had reached a score of

236/6, leading by 296 runs. The match was then won by Australia in the latter stages of day

four.

It is possible to re-run the simulator at any given point of a match that has commenced in

order to obtain up-to-date estimates of the most likely outcome, given the current state of play.

This was done at the end of each day’s play in the example simulation presented in Section 4.2.2.

The results shown in Figure 4.7 provide a visualisation of how the likelihood of each potential

match outcome can vary over the course of a match. At the close of play on day one, Australia’s

probability of winning was marginally higher than the pre-match prediction, suggesting they had

ever so slightly outperformed New Zealand. By the end of day two, New Zealand had improved

their odds of winning since the start of the day, indicating they had taken the honours for the

day’s play. However, day three belonged to Australia, who managed to build a lead of 296 runs,

corresponding to an 86% predicted probability of winning the match. The match was then won

by Australia on day four.

Such simulations can be run and re-run throughout the course of a match, at the end of each

session or day’s play, and after significant match events, such as wickets of key batsmen. By

incorporating this type of analysis into the TV broadcast of a Test match, viewers are provided

with an idea of which team has the momentum, how the match is currently poised, and at least

a partial answer to the age-old question of ‘who’s winning?’. This is in essence, exactly what is

starting to happen with broadcasters across the globe, who are beginning to partner with cricket

analytics companies, such as CricViz, to provide data-driven insights during a Test match.

As the match simulator also provides an estimate of the expected performance for each

player, broadcasters can also use the output to generate talking points among commentators.

For example, when a player walks out to bat, or comes on to bowl, their career record is often

displayed on screen. Including information such as their current estimated effective batting and

bowling averages, or expected performance in the match allows for the identification of players

who are in or out of form. While Chapters 2 and 3 have shown that it is very difficult to predict

a player’s performance in a match, due to the significant amount of noise associated with batting

and bowling performances, such auxiliary information may at least provide a storyline around a

player’s match performance, which may add to the overall viewing experience.
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Figure 4.7. (a) Pre-match predictions. (b) End of day one predictions. (c) End of day two
predictions. (d) End of day three predictions.
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4.3.2 Gaining a competitive advantage

While knowing the potential outcome of a match may provide an interesting talking point,

such results are of little use to professional teams, unless the findings can be used to gain

a competitive advantage over an opposition. Therefore, the simulation output detailing the

expected performances of individual players may be of interest to high performance units of both

domestic and national teams, allowing for coaches and selectors to gain a deeper understanding

of how well certain players are expected to play, given a proposed matchup. Such results may

also provide teams with a means of quantifying the risks and rewards of selecting certain players

over others, which may be particularly useful in situations where there are several viable players

to choose from in an upcoming match.

For example, consider the proposed playing XI for New Zealand introduced in Table 4.1,

which was used in the simulation process throughout Section 4.2. Of the 11 selected players, nine

have been fairly regular selections over the last few years. However, there are two spots within

the New Zealand side that remain up for grabs, as they have done for several years, namely

(1) the role of Tom Latham’s opening batting partner, and (2) the role of primary spin bowler.

Numerous individuals have attempted to stake their claim in each of these positions, although

no player is yet to provide any conviction that they are the long term solution.

Even in 2017, New Zealand’s ongoing issues at the top of the batting order were well

documented, with several unflattering predictions made regarding the potential batting abilities

of the next opening candidate (Stevenson & Brewer, 2017; Stevenson, 2017). At the time of

publication, Jeet Raval had made promising start to his Test career, was outperforming all

projections of ability made in Stevenson & Brewer (2017) and Stevenson (2017), and appeared

to be a potential long-term solution to partner Latham. Unfortunately, as noted in Chapter 2,

Raval has since experienced a change in fortunes, with his performances regressing to what was

forecast at the beginning of his career; a bittersweet moment for the authors — the model has

accurately predicted Raval’s underlying Test match batting ability — but at what cost? The

question of who will open the batting with Tom Latham has returned. At present, Tom Blundell

has taken up the mantle as Latham’s newest opening partner and despite making a successful

start to his career, only time will tell if he is the solution to New Zealand’s opening woes.

In a similar vein, New Zealand has been unable to find a suitable candidate to fulfil the

role of primary spin bowler since the retirement of Daniel Vettori in 2014, who had been the

incumbent since 1997. Again, while multiple players have attempted to stake their claim, the

question of who is New Zealand’s premier spin bowler, remains as pertinent as ever. For a period

of time, Mitchell Santner provided some hope as a consistent replacement for Vettori, however,

in the last 24 months, no fewer than five players have taken the field in a Test match as New

Zealand’s spin bowler: Mitchell Santner, Ish Sodhi, Todd Astle, Will Somerville and Ajaz Patel.
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Wherever a selection dilemma appears, it is possible to make use of the match simulator to

gain an deeper understanding of what the risks and rewards of selecting certain players over

others may be. Simulating the same proposed matchup, using slightly different starting lineups

can provide a rough indication of the impact a certain player may have on the result. It must be

accepted that these simulations are not going to necessarily mimic what may happen in reality,

but the results at least provide a foundation on which selectors can base their decisions.

In Figure 4.8, the simulated match outcomes are presented, conditional on New Zealand’s

opening partnership. One simulation is based on the Latham/Blundell opening partnership,

as used throughout Section 4.2, with the other based on an the alternative Latham/Raval

combination. The results suggest Blundell is expected to average 34.0 with the bat in the

matchup, while Raval is predicted to average a mere 14.9. By observing the difference in win

probabilities, one can infer that replacing Blundell with Raval may decrease New Zealand’s

probability of winning the match by up to 5%. It is again worth acknowledging that these

estimates can be subject to some uncertainty, given the simulation-based nature of the process.

However, this is still a fairly significant result, considering the difference in lineups is just a

single player.
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Figure 4.8. (a) Match outcome predictions with Tom Latham and Tom Blundell opening the
batting. (b) Match outcome predictions with Tom Latham and Jeet Raval opening the batting.

A similar analysis has been conducted for the previously identified spin bowlers, with the

exception of Todd Astle, who has since retired from Test cricket. Simulations were run with

Santner replaced in turn by each of Ish Sodhi, Will Somerville, and Ajaz Patel, with the
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corresponding match outcome predictions provided in Figure 4.9. The expected bowling and

batting averages for each player are presented in Table 4.6. Interestingly, the results do not

suggest that the player with the best expected bowling average, Ajaz Patel, is the player who

provides New Zealand with the highest probability of winning. Instead, it appears as though

Will Somerville would be the best choice in this matchup. Undoubtedly, this result may be

partially due to randomness and uncertainty inherent in the simulation process, however, in

this scenario it is also worthwhile considering the expected batting averages of each player, as

such performances can factor in to the ultimate outcome of the match. Here, the simulation

output implies that while Patel is expected to perform better than Somerville within a bowling

context, the utility that Somerville offers with the bat more than makes up for his slightly

inferior expected bowling average.

Table 4.6. Summary of expected bowling and batting performances for New Zealand spin bowlers
Mitchell Santner, Ish Sodhi, Will Somerville and Ajaz Patel, in the Australia versus New Zealand
matchup.

Expected Expected Predicted

Player bowling average batting average NZ win %

Mitchell Santner 53.2 17.1 30.8%

Ish Sodhi 43.2 15.0 32.1%

Will Somerville 35.3 15.1 34.3%

Ajaz Patel 32.7 9.3 32.5%

Ultimately, a solid argument could be made for any of these four players to be selected. After

all, the model has not accounted for variables such as recent domestic performances or player

form in other match formats, such as T20 and one-day cricket, which may translate to improved

Test match performance. Furthermore, before every match, subjective assessments are made by

both players and coaches, as to which types of bowler are likely to be more or less effective, given

the opposition lineup and the pitch that has been prepared for the match. Santner and Patel

are both left arm orthodox bowlers, Ish Sodhi is a more aggressive leg spin bowler, and Will

Somerville is a right arm off spin bowler. As such, when selecting the most appropriate player

for the match, coaches and selectors must consider far more variables than those employed by

the match simulator.

On face value, the estimated differences in win probabilities when replacing one player with

another can be minimal and at times, it can be difficult to discern the noise from the signal.

However, sports analytics can be all about identifying areas in which marginal gains can be

achieved. Often such areas are unbeknownst to coaches and are not visible to the naked eye.

As long as coaches and selectors continue rely on purely on the eye test and gut-feel when
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Figure 4.9. (a) Match outcome predictions with Mitchell Santner playing as the spin bowler.
(b) Match outcome predictions with Ish Sodhi playing as the spin bowler. (c) Match outcome
predictions with Will Somerville playing as the spin bowler. (d) Match outcome predictions with
Ajaz Patel playing as the spin bowler.
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making subjective judgements in regards to the abilities of players, it is inevitable finer details

will be missed that can be explained and exploited by data. Undoubtedly, coaches are coaches

for the very reason that their intuitions are generally fairly accurate and they tend to make

the correct decision in the majority of cases. Therefore, the utilisation of analytical tools such

as the proposed match simulator, should be done in a manner which informs, challenges and

supplements a subjective opinion, rather than providing the underlying basis and primary

rationale for one’s argument.

4.4 Discussion

4.4.1 Limitations and future work

The proposed simulation-based method of predicting the most likely outcome of a match attempts

to mimic plausible courses a match could take. Making use of the empirical data from a large

sample of previous Test matches ensures that the general pace of a simulated match is similar

to what has been observed historically. As shown, the general results and scorecards that are

simulated tend to be indistinguishable from reality, however, it is important to acknowledge

the method is far from perfect and there are several shortcomings and areas for potential

improvement.

When estimating the abilities of individual players, the match simulator makes use of the

results obtained from the batting and bowling career trajectory models, detailed in Chapters

2 and 3. Although these estimates have been proven to provide more accurate predictions of

player ability than traditional metrics, such as batting and bowling averages, there is still a

certain level of uncertainty associated with these forecasts. As these predictions only consider

past performances in Test cricket, the accuracy of such estimates may be called into question for

players who have only played in a handful of Test matches. For players new to the Test scene, it

may be advantageous to develop a method of incorporating domestic first-class data into the

predictions of player ability.

During the simulation of a given ball, the simulation process accounts for the respective

abilities of the batsman and bowler in question. However, the specific strengths and weakness of

players versus certain batting and bowling types have been ignored. Inevitably, some players

have a preference of bowling to left or right-handed batsmen. Similarly, some players clearly

perform better when facing spin bowling, rather than pace bowling, or vice versa. Regrettably,

the Cricsheet data source does not provide this level of information at the individual level.

However, such player-specific characteristics are available in the data source provided by New

Zealand Cricket and NV Play. As such, when simulating the potential match outcomes for
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domestic first-class matches in New Zealand, the match simulator is able to make adjustments

where certain batsmen have a specific weakness against particular bowling types, or where

bowlers have a significant preference in bowling to right or left-handed batsmen. Unfortunately,

the process of manually defining batting handedness and bowling type in the Cricsheet data

source is an arduous process that cannot be automated. Nevertheless, this an obvious area

in which the match simulator can be improved and is something which must be addressed

eventually. Incorporating this level of information in the methodology is necessary for obtaining

match outcome predictions that are truly reflective of reality. Doing so will provide coaches and

selectors with more accurate quantifications of the pros and cons of selecting certain bowlers

or batsmen in a matchup, given the opposition lineup, which will ultimately make the match

simulation tool more valuable than it is at present.

One known advantage the proposed match simulator has over other more well-known methods,

such as the WinViz model, is the inclusion of effects such as getting your eye in for individual

players. By assuming a non-constant batting ability during an innings, the simulated results are

going to have a higher predictive accuracy than methods that incorrectly assume batting scores

can be modelled using a geometric distribution. However, one variable that is held constant in

the match simulator is that of batting strike rate. In reality, it is likely that a batsman’s strike

rate is also influenced by the process of getting your eye in, much like their underlying batting

ability. As a result, it is possible that the match simulator overestimates the scoring rate for

batsmen on low scores.

On a similar note, the simulator does not have any built-in logic to manipulate the general

tempo, or scoring rate of a match. Every now and then, there are occasions in a Test match

where the batting team opts to take more risks to score quick runs and advance the state of a

game, in order to avoid the possibility of drawing a match. Conversely, when teams are set an

unattainable target score, run scoring becomes irrelevant as the batting team is simply trying to

survive in order to secure a draw. At present, the proposed simulation method does not account

for such scenarios.

Finally, within a bowling context, there is no adjustment made to account for the state of the

ball. It is well-known that a new cricket ball will offer a lot more assistance to bowlers than an

old, worn out ball. As such, it may be worthwhile to consider a method of quantifying how much

more difficult batting is against a new ball. This is a fairly complex and challenging problem, as

not only are different bowlers able to exploit the new ball with varying degrees of success, the

state of the pitch — which is rarely identical between any two matches — will have a significant

effect on how quickly the ball deteriorates.

On the whole, given the countless complexities and intricacies of the game of cricket, there

are a multitude of factors that have not been considered within the proposed method of match
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simulation. This is acknowledged, however, care has been taken to at least address factors which

can have a significant impact on the final outcome of a match.

4.4.2 Concluding remarks

The match simulator discussed in this chapter provides a novel means of estimating the most

likely outcome of a Test match, given two proposed lineups. Unlike a number of past studies,

the proposed method considers the strengths of each team on an individual player basis, rather

than on the past performances of the team as a whole. The simulations take the estimates of

player ability obtained from Chapters 2 and 3 as inputs and marginalise over them appropriately.

This provides levels of detail in the estimates that many other methods are simply unable to

compete with. Consequently, the match simulator may have significant real-world utility in both

a public and private capacity.

The use of empirical data and built-in logic regarding several complexities of Test cricket,

such as bowler selection, guarantees the simulation process to produce results which are generally

in the realm of possibility in terms of what could really happen on the pitch. Adjusting the

likelihood of various run scoring and wicket taking events occurring on a given delivery to account

for the respective batsman and bowler abilities is an approach that is, in an academic sense, yet

to be adopted or documented. Unfortunately, due to the element of secrecy and confidentiality

surrounding commercial products that attempt to provide similar predictions and outputs, it is

difficult to compare the predictive accuracy of the proposed method with competing models.

Nevertheless, it is not unreasonable to believe that the proposed method could be among one of

the most accurate predictors of match outcome in Test cricket, given the player ability estimates

have been shown to be more accurate than measures such as batting and bowling averages.

The confidence one can have in this statement will only become stronger, as the shortcomings

identified in Section 4.4.1 are addressed.

Examples of how the results of simulated matches could be used from both a public and

private standpoint have also been discussed. The simulation output can be used to provide

up-to-date predictions for which team is most likely to win a match and can help answer the

age-old question of: ‘who’s winning?’. Furthermore, the expected performances of each player can

be used to generate and facilitate discussions among commentators as to who the key performers

are likely to be in a match, as well identifying performances where players have significantly

under or overachieved.

From the perspective of coaches and selectors, the match simulation tool provides a means

of quantifying the expected performances of individual players and the impact they may have

on their team’s chances of wining a match, which may help in fine-tuning the balance of a

team. As shown, it is not always the player with the best career batting or bowling average



Chapter 4. A simulation-based method of match outcome prediction 167

who is necessarily the best selection for a given role within a side. Of course, the results from a

simulated match are certainly not intended to replace the human element of the team selection

process. Instead, the output can be used as another analytical tool in times of uncertainty,

to provide discussion points and a secondary viewpoint that may not otherwise be available.

At present, there is a significant element of guesswork when weighing up the pros and cons of

selecting certain players to fill a role in a side; the results from the match simulator provide a

more formal means of quantifying this uncertainty.
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Chapter 5

Conclusion

The research presented in this thesis has primarily focused on the development of statistical

models that can be used to analyse player performance in the sport of cricket. At present,

traditional cricketing statistics, such as the batting and bowling average, are commonly used to

quantify the playing abilities of professional players. However, such metrics do not account for a

multitude of factors that may impact a player’s underlying abilities and subsequent performances,

including recent form, opposition strength, and innings and venue-specific effects. The proposed

models provide a means of adjusting for such variables and allow for the estimation of a player’s

batting (Chapter 2) and bowling (Chapter 3) career trajectories, which describe how playing

abilities have varied over the course of a career to date and provide predictions of past, present,

and future ability. Estimates relating to the level of uncertainty associated with these predictions

are also readily available. Generally speaking, these predictions have been shown to provide more

accurate forecasts of future performances than quantities such as the batting and bowling average.

Furthermore, a simulation-based method of predicting the outcome of an upcoming match has

been derived, which employs the player-specific estimates of batting and bowling ability and

marginalises over the uncertainties (Chapter 4). Potential applications of the simulation output

have been identified in both a public and private capacity, providing useful insights related to

the likely performances of individual players, as well as quantifying the risks and rewards of

selecting certain players in a given matchup.

5.1 Batting career trajectories

In cricket, recent performance, or form, is frequently cited as being a major reason for selecting

or dropping specific players within a team, particularly in the context of batting. Therefore, if

form is truly a valid criteria for selectors to use when picking a side, then recent performances

should be a significant predictor of future batting scores. The batting career trajectory model

169
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developed in Chapter 2 aims to detect variations in batting ability that may be observed over

the course of a playing career, due to the likes of recent form, as well as general improvements

or deteriorations in technique, fitness or eyesight. In previous works by the author (Stevenson &

Brewer, 2017; Stevenson, 2017), several models have been derived that allow for the identification

of changes in batting ability that may occur within an innings, due to the cricketing concept of

getting your eye in. These earlier models are used as a theoretical foundation, which is built upon

and extended by the batting career trajectory model, allowing for the detection of variations in

batting ability that may occur between innings.

Time dependence between individual batting performances is measured using a Gaussian

process, a machine learning algorithm that allows for a range of plausible functions to be fitted

to batting data, to describe a player’s career trajectory. When evaluating each performance,

several innings-specific variables are considered, namely, the specific innings of a match, and

the venue — either home or away — in which the performance took place. As pitches in Test

cricket are used for up to five days, it is often inevitable that batting conditions will deteriorate

as a match progresses. This tends to result in batting being more difficult in the latter innings

of a Test match. Furthermore, home ground advantage has been identified as a performance

enhancing factor across a number of sports. Cricket is no different, however, it is plausible that

in Test cricket, such an advantage manifests itself due to familiarity with the local pitch and

weather conditions, which have a major bearing on how a match is played out. The findings

support each of these pre-conceived hunches, with both the innings and venue-specific effects

found to be significant when conducting a hierarchical analysis across the entire set of players

analysed.

Interestingly, for the vast majority of players, little evidence was found to support the idea

that recent form is a significant predictor of future performance. Instead, variations in ability are

often observed over the long-term, suggesting that underlying batting capabilities develop and

deteriorate slowly during a playing career, potentially due to any or all of the reasons previously

identified. These results provide some support for the idea of finding your feet, whereby players

— particularly those who make their international debut at a young age — can take some time to

adjust to the demands of Test cricket and reach their peak ability. Comparing the predictive

accuracy of the batting career trajectory model with other methods, such as the batting average

and a range of simple moving average models, found the proposed model provides the most

accurate estimates of future batting scores. Moreover, these diagnostic checks indicate that

using only recent batting efforts to predict upcoming performance is actually the least accurate

method of those tested, a finding of major interest with potential real-world applications. In

fact, after the career trajectory model, the next best method of predicting future scores was the

simple batting average. In this regard, there is perhaps some evidence to suggest that using form
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as a main criteria to drop and select certain players is not recommended, unless other analyses

have provided evidence to the contrary. These findings give rise to the oft-touted phrase “form

is temporary, class is permanent”, implying that while many players go through good and bad

patches of form during their career, those who are truly talented will often bounce back to their

best over the long term.

Finally, a comparison of the batting career trajectory model with the official ICC batting

ratings has identified and exposed several problems with the ICC’s method of ranking players.

In particular, the ICC ratings are unable to provide a natural cricketing interpretation, making

it difficult to properly quantify the differences in abilities between players. On the other hand,

the batting career trajectory model is expressed in units of a batting average, a metric which all

members of the cricketing community are familiar with and lends itself to the direct comparison

of players. Furthermore, working within a Bayesian framework allows for such comparisons to

be made via probabilistic statements, which provide clear insights as to the pros and cons of

selecting certain players over others.

5.2 Bowling career trajectories

Although bowling data is typically less noisy than batting data, the concept of bowling form

is still regularly discussed as being an indicator of a player’s current bowling ability. However,

unlike batting, bowling performances are usually summarised using multiple variables, making it

difficult to easily compare individual bowling efforts both within and between different innings.

Additionally, given the wide ranging nature of batting abilities between players, it is advantageous

to consider the strengths of the individual batsmen bowled to during a performance. Rather

than treating all runs conceded as equal, those conceded to lower quality batsmen should be

weighted more heavily than those conceded to world-class players. Each of these challenges must

be addressed before a career trajectory model can be implemented within a bowling context.

Firstly, rather than considering bowling efforts on a per-innings basis, each performance

is split into separate bowling spells, defining the number of runs conceded between individual

wickets. Under this specification, each bowling spell is simply measured by the number of runs

conceded, allowing for performances to be visualised over time. One limitation of this method is

the requirement of ball-by-ball data, which can be difficult to obtain. Secondly, to address the

issue related to the variable strengths of opposition batsmen, the standardised bowling average

quantity has been derived. This measure allows for the number of runs conceded by bowlers

in a given spell to be adjusted accordingly, depending on the estimated batting abilities of the

opposition, which are obtained using the results of the batting career trajectory model presented

in Chapter 2. Then, by estimating the average batting ability of all players across modern Test
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cricket, the adjusted bowling average quantity has been derived, expressing a player’s bowling

average in terms of the number of runs they are expected to concede per wicket taken, if they

were bowling to the average Test batsman.

The derivation of these new measures of performance are among the most important con-

tributions of this thesis to the field of cricket analytics and should not be overlooked. When

estimating and predicting the bowling abilities of individual players, it is often discussed and

acknowledged that opposition batting quality is a variable which must be considered. However,

to date there is still no commonly accepted method of doing so, or, those which claim to are

not publicly available. While the usage of standardised and adjusted bowling averages may not

catch on across the wider cricketing community, they are a step in the right direction and may

promote further work to find a more permanent solution to this problem.

Using these newly derived measures of performance, a bowling career trajectory model has

been developed to measure and predict past, present, and future bowling ability. Like the batting

career trajectory model, a Gaussian process is employed to detect any time dependence that

may exist between performances. Again, innings and venue-specific effects are considered to

account for the varying conditions players may find themselves bowling in. Generally speaking,

bowling ability appears to vary over shorter time frames, when compared with the results

obtained from the batting career trajectory model. Meanwhile, for many players there was less

support to imply bowling abilities vary and fluctuate nearly as much their batting counterparts.

Additionally, there was minimal evidence to suggest that the innings and venue-specific factors

have a significant impact on bowling bowling ability. However, it is important to note that the

estimated batting abilities of opposition players already account for these external variables. As

such, it may simply be a case that the proposed method assigns all innings and venue-specific

variation in ability to batsmen, when in fact some of the explanatory power should be attributed

to bowlers.

Once again, the results obtained from the bowling career trajectory model were compared

with the ICC bowling ratings, leading to similar conclusions regarding the limitations of the ICC

methodology. While there tends to be a reasonable amount of overlap between the methods,

the proposed model provides an intuitive cricketing interpretation and allows for differences in

abilities to be easily quantified. Furthermore, the bowling career trajectory model was found to

provide the most accurate estimates of future performance, when compared with predictions

obtained using the bowling average and a set of simple moving average models. Similar to the

findings discovered in a batting context, the least accurate method of predicting future bowling

performance was that which only considers a player’s most recent efforts. These findings should

act as another stark warning to coaches and selectors; unless you are using other advanced

analytical tools to gauge player bowling ability, there is real potential of falling victim to recency
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bias if selecting bowlers based on short-term form.

5.3 Match simulation

The career trajectory models derived in Chapters 2 and 3 provide estimates of batting and

bowling ability that are more accurate than traditional metrics such as the batting and bowling

average. While these predictions are inherently useful to players, coaches and selectors alike, it

is even more valuable to have a means of estimating the effect an individual is going to have on

the outcome of a match. This is achieved by using the results obtained from the batting and

bowling career trajectory models as inputs to a match simulation engine, which provides team

and individual-specific predictions pertaining to the most likely outcome of a match, given two

proposed playing XIs.

The match simulator uses empirical data from all Test matches from 2008 onward to drive

the underlying output of every single delivery. This ensures that the tempo of all simulated

matches loosely mimics what has previously occurred. Additionally, some logic has been built

into the match engine in order to address several of the finer complexities of Test cricket, such

as dealing with declarations and bowler selection during an innings. Again, this aims to ensure

the resulting output is as realistic as possible and provides estimates that accurately reproduce

what may really happen out on the pitch.

Several potential real-world applications of the match simulator have been identified and

discussed. Firstly, the results may be of interest to public broadcasters of cricket, wishing to

provide additional match analysis from a data-driven perspective to supplement the overall

viewing experience. The simulation output provides up-to-date estimates regarding the current

state of a match, attempting to provide a quantifiable answer to the question of ‘who’s winning?’.

Additionally, the output can be used to identify which players are in and out of form coming

into a match and provides an indication of which players are likely to be the key performers in a

given matchup. This may provide commentators with various talking points and player-specific

storylines which can be discussed prior to and throughout a match. While often considered over

the top and hyperbolic, if there is one thing sports broadcasting in the US can teach the world,

it is that pre-match narratives — regardless of their plausibility — can increase viewership and

interest in a match.

Secondly, the match simulator may be utilised by coaches and selectors of professional teams

to gain a competitive advantage over their opponents. Similar to the potential use in a public

perspective, the output attempts to provide quantifications regarding questions that are usually

based on subjective opinions. By predicting the outcome of a match using a range of potential

playing XIs, teams can work out which balance of players are most likely to achieve a positive
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result. It is worth reiterating that the match simulator is not intended to replace the human

element of the team selection process, rather to challenge and support opinions about various

players and ask questions that may otherwise be overlooked. While the simulations ignore a

number of contextual variables that are certainly important when selecting a team for match

day, they at least provide a data-driven foundation for the optimal playing XI around which

coaches and selectors can build their side.

5.4 Concluding remarks

As more and more industries, including sport, rush to keep up with the latest trends in data

science and find a use for modern analytical techniques with exciting labels, such as machine

learning and artificial intelligence, it is important not to lose sight of the ultimate goal when

conducting data analysis. Analytics for analytics’ sake is like a fisherman casting a rod into an

empty pond, knowing full well there are no fish at the bottom; without a purpose and knowledge

of what one wants to achieve from their analytical pursuit, the exercise is fruitless.

The development of the proposed methods and models in this thesis have undergone careful

consultation with experts in the field of cricket analytics and an end goal in mind. This has

ensured while the models are somewhat complex and employ the use of machine learning

algorithms, the resulting output can be readily understood by the wider cricketing community,

not just those engaged in the field of sports analytics. It has been pleasing to see the results

support a number of pre-conceived cricketing hunches from a statistical point of view, although

it is important to note that complex mathematical functions, such as Gaussian processes, were

only employed where more traditional statistical tools were unable to perform with the same

accuracy. Extending the methodology to apply to other formats, such as one-day and T20

cricket, is in the scope of future work, allowing for additional cricket-related hypotheses to be

tested, and for the models to be implemented across a wider range of matches.

The present research does not come without its own limitations, which have been well

documented throughout. In many cases, the results do not provide drastically difference

estimates to currently used and accepted methods, which are generally far more time efficient

than those that have been proposed. However, a primary application of analytics in sport is

to identify areas in which teams can move the needle fractionally, by effecting small changes

to their playing strategies and decision making processes. Ultimately professional sport is a

results-driven industry. A 1% increase in win probability may not sound significant, but over

the long term can be worth a lot in terms of both on-field reward and off-field gain.

The aim of this thesis has not been to reinvent the wheel when it comes to the general

analysis of cricket. In the majority of instances, batting and bowling averages will continue
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to suffice as very reasonable estimates of player ability. Instead, the results and findings can

be used to supplement one’s understanding of the sport and to tailor exceptions in relation to

concepts such as recent form. What this research has shown is that cricket is not a sport that

can simply be boiled down to several equations outlining the most optimal way to play; however,

it has been a fulfilling exercise to understand a little more about the numbers behind the game.
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Appendix A

The following R functions are referred to and used throughout Chapter 4 when discussing the

simulation of Test matches.

sim match — a function that simulates a Test match from start to finish, assuming a

maximum of 450 overs of play (90 per day).

## A function that simulates a Test cricket match

sim_match <- function(summary_data,

match_players, player_abilities,

bowling_logic, iteration,

match_output = TRUE, innings_output = TRUE,

over_output = TRUE, ball_output = TRUE)

{

## Initialise the match

match_data <- initialise_match(summary_data = summary_data,

match_players = match_players,

bowling_logic = bowling_logic,

player_abilities = player_abilities,

iteration = iteration)

##### Innings 1 #####

## Simulate the 1st innings

first_innings <- sim_innings(match_data = match_data, innings = 1,

innings_output = innings_output,

over_output = over_output,

ball_output = ball_output)

## Update the match_data object

match_data$innings_data[[1]] <- first_innings$innings_data

match_data$match_parameters <- first_innings$match_parameters

##### End of innings 1 #####
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##### Innings 2 #####

## Simulate the 2nd innings

second_innings <- sim_innings(match_data = match_data, innings = 2,

innings_output = innings_output,

over_output = over_output,

ball_output = ball_output)

## Update the match_data object

match_data$innings_data[[2]] <- second_innings$innings_data

match_data$match_parameters <- second_innings$match_parameters

##### End of innings 2 #####

##### Innings 3 #####

## Simulate the 3rd innings

third_innings <- sim_innings(match_data = match_data, innings = 3,

innings_output = innings_output,

over_output = over_output,

ball_output = ball_output)

## Update the match_data object

match_data$innings_data[[3]] <- third_innings$innings_data

match_data$match_parameters <- third_innings$match_parameters

##### End of innings 3 #####

##### Innings 4 #####

## Check if 4th innings is necessary

## I.e. has either team won by an innings?

if((match_data$match_parameters$toss == "home" &

match_data$match_parameters$lead_deficit < 0) |

(match_data$match_parameters$toss == "away" &

match_data$match_parameters$lead_deficit > 0))

{

## End the match

match_data$match_parameters$match_completed <- TRUE

## Determine the results

match_data$match_parameters$result <-

ifelse(match_data$match_parameters$lead_deficit > 0, "home", "away")

}else{
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## Simulate the 4th innings

fourth_innings <- sim_innings(match_data = match_data,

innings = 4,

innings_output = innings_output,

over_output = over_output,

ball_output = ball_output)

## Update the match_data object

match_data$innings_data[[4]] <- fourth_innings$innings_data

match_data$match_parameters <- fourth_innings$match_parameters

}

##### End of innings 4 #####

## Check how the match ended

## 1. If there are overs remaining, determine the result

if(match_data$match_parameters$overs_remaining > 0)

{

if(match_data$match_parameters$lead_deficit > 0)

match_data$match_parameters$result <- "home"

if(match_data$match_parameters$lead_deficit < 0)

match_data$match_parameters$result <- "away"

if(match_data$match_parameters$lead_deficit == 0)

match_data$match_parameters$result <- "tie"

}

## 2. If no overs are remaining, the match was a draw

if(match_data$match_parameters$overs_remaining == 0)

match_data$match_parameters$result <- "draw"

## Output

if(isTRUE(match_output))

cat("Result: ", match_data$match_parameters$result, "\n", sep = "")

## Return the match parameters and innings data

return(list(match_parameters = match_data$match_parameters,

match_data = match_data$innings_data))

}
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sim innings — a function that simulates a team’s innings.

## A function that simulates an innings

sim_innings <- function(match_data, innings,

innings_output = TRUE, over_output = TRUE, ball_output = TRUE)

{

## Initialise the innings and match parameter objects

innings_data <- initialise_innings(match_data = match_data, innings = innings)

match_parameters <- match_data$match_parameters

## Continue to simulate overs until 10 wickets are lost,

## or until the batting team declares,

## or until the batting team has chased down the target,

## or until there are no overs remaining in the match

while(innings_data$wickets < 10 &

isFALSE(innings_data$declare) &

isFALSE(innings_data$innings_completed) &

isFALSE(match_parameters$match_completed) &

match_parameters$overs_remaining > 0)

{

## Simulate an over

over_data <- sim_over(match_data = match_data,

match_parameters = match_parameters,

innings_data = innings_data,

over_output = over_output,

ball_output = ball_output)

## At the end of each over:

## 1. Update the innings data

innings_data <- over_data$innings_data

## 2. Update the match parameters

match_parameters <- over_data$match_parameters

## 3. If in the 3rd innings of a match, should the innings be declared?

if((innings == 3 & innings_data$batting_team == "home" &

match_parameters$lead_deficit > (2 * match_parameters$overs_remaining + 150)) |

(innings == 3 & innings_data$batting_team == "away" &

match_parameters$lead_deficit < -(2 * match_parameters$overs_remaining + 150)))

{

## Delcare and end the innings

innings_data$declare <- TRUE

innings_data$innings_completed <- TRUE

}
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## 4. Select the bowler to bowl the next over

if(isFALSE(innings_data$innings_completed))

{

## Current bowler (who cannot bowl the next over)

current_bowler <- innings_data$bowling$bowler$name

## Overs bowled

## If innings has exceeded 160 overs, use the 160th over bowling workload

## estimates

overs_bowled <- ifelse(innings_data$overs_bowled > 160,

160, innings_data$overs_bowled)

## Get the list of bowlers and relevant bowling workloads

bowlers <- subset(match_data$bowling_logic,

team %in% innings_data$bowling_team)[ , c(1, 3 + overs_bowled)]

## Exclude current bowler so they do not bowl two consecutive overs

bowlers <- subset(bowlers, name != current_bowler)

## "BOWLERS name?!"

bowlers_name <- sample(bowlers$name, size = 1, prob = bowlers[ , 2], replace = TRUE)

## Extract the bowler’s data from the list of bowler objects

innings_data$bowling$bowler <- innings_data$bowling$players[[bowlers_name]]

## Check if bowler has already bowled in the innings, if not,

## add to the bowling scorecard

if(!(innings_data$bowling$bowler$name %in% innings_data$bowling$scorecard$bowler))

{

## Number of bowlers who have bowled so far in the innings

nbowlers <- length(innings_data$bowling$scorecard$bowler)

## Append bowler to the bowling scorecard

innings_data$bowling$scorecard <-

rbind(innings_data$bowling$scorecard,

data.frame(innings_index = innings,

bowler = innings_data$bowling$bowler$name,

wt = innings_data$bowling$bowler$bowl_ability,

overs = 0, balls = 0, maidens = 0,

runs_conceded = 0, standardised_runs_conceded = 0,

wickets = 0, RPO = 0, stringsAsFactors = FALSE))

}

}

}
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## If innings ended midway through an over adjust overs remaining

## No need to do this if currently in the 4th innings of a match

if(match_parameters$balls_bowled > 0 & innings_data$innings_index != 4)

{

## Take an over off the overs remaining

match_parameters$overs_bowled <- match_parameters$overs_bowled + 1

match_parameters$overs_remaining <- match_parameters$total_overs -

match_parameters$overs_bowled

match_parameters$balls_bowled <- 0

}

## End innings and match if there are no overs remaining

if(match_parameters$overs_remaining < 1)

{

## End the innings

innings_data$innings_completed <- TRUE

## End the match

match_parameters$match_completed <- TRUE

}

## Output the innings

if(isTRUE(innings_output))

cat("Batting team: ", innings_data$batting_team, ". Score: ",

innings_data$total_scored, "/", innings_data$wickets,

" (", innings_data$overs_bowled, ".", innings_data$balls_bowled,

")", "\n", sep = "")

## Return the innings data

return(list(match_parameters = match_parameters,

innings_data = innings_data))

}
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sim over — a function that simulates an over.

## A function that simulates an over

sim_over <- function(match_data, match_parameters, innings_data,

over_output = TRUE, ball_output = TRUE)

{

## Initialise a data.frame to store the results for each ball

over_data <- data.frame(runs = numeric(1),

wicket_type = character(1),

extra_runs = numeric(1),

extra_type1 = character(1),

extra_type2 = character(1),

legal_delivery = logical(1),

rotate_strike = logical(1),

bat_ability = numeric(1),

bowl_ability = numeric(1),

stringsAsFactors = FALSE)

## Separate out the elements of our match data object

match_players <- match_data$match_players

match_abilities <- match_data$match_abilities

## Initialise over parameters

ball_count <- 1

## Bowl until 6 legitimate balls have been bowled,

## or until the batting side has lost 10 wickets,

## or until the batting side has chased down the target,

## or until there are no overs remaining in the match

while(innings_data$bowling$bowler$balls < 6 & innings_data$wickets < 10)

{

## Simulate a ball

ball <- sim_ball(summary_data = match_data$summary_data,

innings_data = innings_data,

ball_output = ball_output)

## Save the ball event

over_data[ball_count, ] <- ball$event

## Update the innings data

innings_data <- ball$innings_data
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## Update match parameters:

## Lead/deficit

match_parameters$lead_deficit <-

ifelse(innings_data$batting_team == "home",

match_parameters$lead_deficit + ball$event$runs + ball$event$extra_runs,

match_parameters$lead_deficit - ball$event$runs - ball$event$extra_runs)

## Number of balls bowled

match_parameters$balls_bowled <-

ifelse(isTRUE(ball$event$legal_delivery),

match_parameters$balls_bowled + 1,

match_parameters$balls_bowled)

## If in the 4th innings, check if the batting team chased down the target

if(innings_data$innings_index == 4 &

((innings_data$batting_team == "home" & match_parameters$lead_deficit > 0) |

(innings_data$batting_team == "away" & match_parameters$lead_deficit < 0)))

{

## Update innings_completed and match_completed parameters

innings_data$innings_completed <- TRUE

match_parameters$match_completed <- TRUE

## End the over, innings, and match

return(list(match_parameters = match_parameters,

innings_data = innings_data,

over_data = over_data))

}

## Was there a wicket?

if(ball$event$wicket_type != "")

{

## If 10 wickets have fallen, conclude the over

if(innings_data$wickets == 10)

{

## Update the innings_completed parameter

innings_data$innings_completed <- TRUE

## If that was the 6th legal delivery of the over,

## update bowling figures accordingly

if(innings_data$balls_bowled == 6)

{

## Update bowler object

innings_data$bowling$bowler$overs <- 1 + innings_data$bowling$bowler$overs

innings_data$bowling$bowler$balls <- 0
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## Update bowling scorecard

subset(innings_data$bowling$scorecard,

bowler == innings_data$bowling$bowler$name)

[ , "overs"] <- innings_data$bowling$bowler$overs

subset(innings_data$bowling$scorecard,

bowler == innings_data$bowling$bowler$name)

[ , "balls"] <- innings_data$bowling$bowler$balls

}

## If 10 wickets have fallen to end the 4th innings, conclude the match

if(innings_data$innings_index == 4)

match_parameters$match_completed <- TRUE

## End the over and innings

return(list(match_parameters = match_parameters,

innings_data = innings_data,

over_data = over_data))

}else{

## Otherwise, bring in the next batsman

next_batsman <- innings_data$batting$players[innings_data$wickets + 2]

## Add next batsmen to the innings data object

innings_data$batting$batsmen[[innings_data$batting$striker]] <-

initialise_batsman(name = next_batsman,

innings = innings_data$innings_index,

match_players = match_data$match_players,

match_abilities = match_data$match_abilities)

## Determine batsman’s position in the batting order

innings_data$batting$batsmen[[innings_data$batting$striker]]$position <-

innings_data$wickets + 2

}

}

}

## If the over ended after 6 balls, perform usual checks:

## Batsmen switch ends at the end of an over

if(isFALSE(ball$event$rotate_strike))

swap(innings_data$batting$striker, innings_data$batting$non_striker)
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## Was over a maiden?

if(sum(over_data$runs) == 0 &

all(over_data$extra_type1 != "wides") &

all(over_data$extra_type1 != "noballs"))

{

## Record maiden in bowler object

innings_data$bowling$bowler$maidens <-

innings_data$bowling$bowler$maidens + 1

## Record maiden in bowling scorecard

subset(innings_data$bowling$scorecard,

bowler = innings_data$bowling$bowler$name)

[ , "maidens"] <- innings_data$bowling$bowler$maidens

}

## Update innings data

innings_data$overs_bowled <- innings_data$overs_bowled + 1

innings_data$balls_bowled <- 0

## Update bowling scorecard and bowler data

innings_data$bowling$bowler$overs <- innings_data$bowling$bowler$overs + 1

innings_data$bowling$bowler$balls <- 0

subset(innings_data$bowling$scorecard,

bowler == innings_data$bowling$bowler$name)

[ , "overs"] <- innings_data$bowling$bowler$overs

subset(innings_data$bowling$scorecard,

bowler == innings_data$bowling$bowler$name)

[ , "balls"] <- innings_data$bowling$bowler$balls

## Update list of bowlers

innings_data$bowling$players[[innings_data$bowling$bowler$name]] <-

innings_data$bowling$bowler

## Update match parameters

match_parameters$overs_bowled <- match_parameters$overs_bowled + 1

match_parameters$balls_bowled <- 0

match_parameters$overs_remaining <- match_parameters$total_overs -

match_parameters$overs_bowled
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## Output the results of the over

if(isTRUE(over_output))

cat("Overs bowled = ", innings_data$overs_bowled, ". ",

"Runs scored from over = ",

sum(over_data$runs) + sum(over_data$extra_runs), ". ",

"Score = ", innings_data$total_scored, "/", innings_data$wickets, ".\n",

innings_data$batting$batsmen[[1]]$name, " ",

innings_data$batting$batsmen[[1]]$runs_scored, ", ",

innings_data$batting$batsmen[[2]]$name, " ",

innings_data$batting$batsmen[[2]]$runs_scored, ".\n",

innings_data$bowling$bowler$name, ": ",

innings_data$bowling$bowler$wickets, "/",

innings_data$bowling$bowler$runs_conceded,

" (", innings_data$bowling$bowler$overs, ")",

"\n", sep = "")

## Return the over data, updated innings data and match parameters

return(list(match_parameters = match_parameters,

innings_data = innings_data,

over_data = over_data))

}
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sim ball — a function that simulates a single ball.

## A function that simulates a ball

sim_ball <- function(summary_data, innings_data, ball_output = TRUE)

{

## Initialise ball parameters

runs_conceded <- 0

## Extract the batsman/bowler objects from the innings data

batsman <- innings_data$batting$batsmen[[innings_data$batting$striker]]

bowler <- innings_data$bowling$bowler

## Simulate the ball event, conditional on the batsman/bowler

ball <- sim_event(summary_data, batsman, bowler)

## Include information about the batsman/bowler in the ball

bat_ability <- ball$event$bat_ability

bowl_ability <- ball$event$bowl_ability

## Resolve the ball event

wicket <- ifelse(ball$event$wicket_type != "", TRUE, FALSE)

wicket_type <- ifelse(ball$event$wicket_type == "", NA, ball$event$wicket_type)

boundary4 <- ifelse(ball$event$runs == 4, TRUE, FALSE)

boundary6 <- ifelse(ball$event$runs == 6, TRUE, FALSE)

legal_delivery <- ball$event$legal_delivery

rotate_strike <- ball$event$rotate_strike

## Determine number of runs conceded by the bowler

runs_conceded <- ball$event$runs

## Deal with extras

if(ball$event$extra_type1 == "wides")

runs_conceded <- ball$event$runs + ball$event$extra_runs

if(ball$event$extra_type1 == "noballs")

runs_conceded <- ball$event$runs + 1

## Compute the number of standardised runs conceded

standardised_runs_conceded <- runs_conceded / bat_ability

## Update the innings scoreboard

innings_data$runs_scored <- innings_data$runs_scored + ball$event$runs

innings_data$extras_scored <- innings_data$extras_scored + ball$event$extra_runs

innings_data$total_scored <- innings_data$runs_scored + innings_data$extras_scored
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## Update the innings parameters

innings_data$balls_bowled <- ifelse(isTRUE(legal_delivery),

innings_data$balls_bowled + 1,

innings_data$balls_bowled)

innings_data$wickets <- ifelse(isTRUE(wicket),

innings_data$wickets + 1,

innings_data$wickets)

## Update the batsman object

batsman$runs_scored <- batsman$runs_scored + ball$event$runs

batsman$balls_faced <- ifelse(ball$event$extra_type1 != "wides",

batsman$balls_faced + 1,

batsman$balls_faced)

batsman$out <- ifelse(isTRUE(wicket), TRUE, batsman$out)

batsman$how_out <- ifelse(isTRUE(wicket), wicket_type, batsman$how_out)

## Update the batsman object

if(ball$event$runs %in% c(4, 6))

{

batsman$fours <- ifelse(ball$event$runs == 4, batsman$fours + 1, batsman$fours)

batsman$sixes <- ifelse(ball$event$runs == 6, batsman$sixes + 1, batsman$sixes)

}

## Update the bowler object

bowler$balls <- ifelse(isTRUE(legal_delivery), bowler$balls + 1, bowler$balls)

bowler$ball_count <- bowler$ball_count + 1

bowler$runs_conceded <- bowler$runs_conceded + runs_conceded

bowler$standardised_runs_conceded <- bowler$standardised_runs_conceded +

standardised_runs_conceded

bowler$wickets <- ifelse(wicket_type %in%

c("bowled", "caught", "caught and bowled",

"hit wicket", "lbw", "stumped"),

bowler$wickets + 1, bowler$wickets)

## Update the batting scorecard

innings_data$batting$scorecard$runs_scored[batsman$position] <- batsman$runs_scored

innings_data$batting$scorecard$balls_faced[batsman$position] <- batsman$balls_faced

innings_data$batting$scorecard$strike_rate[batsman$position] <-

innings_data$batting$scorecard$runs_scored[batsman$position] /

innings_data$batting$scorecard$balls_faced[batsman$position]

innings_data$batting$scorecard$out[batsman$position] <- wicket

innings_data$batting$scorecard$how_out[batsman$position] <- ifelse(isTRUE(wicket),

wicket_type, "")
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## Extras and total runs scored

innings_data$batting$scorecard$runs_scored[12] <- innings_data$extras_scored

innings_data$batting$scorecard$runs_scored[13] <- innings_data$total_scored

## Update the bowling scorecard

bowl_position <- which(innings_data$bowling$scorecard$bowler ==

innings_data$bowling$bowler$name)

innings_data$bowling$scorecard$balls[bowl_position] <- bowler$balls

innings_data$bowling$scorecard$runs_conceded[bowl_position] <- bowler$runs_conceded

innings_data$bowling$scorecard$standardised_runs_conceded[bowl_position] <-

bowler$standardised_runs_conceded

innings_data$bowling$scorecard$wickets[bowl_position] <- bowler$wickets

innings_data$bowling$scorecard$RPO[bowl_position] <-

ifelse(innings_data$bowling$scorecard$runs_conceded[bowl_position] == 0,

0,

innings_data$bowling$scorecard$runs_conceded[bowl_position] /

(6 * innings_data$bowling$scorecard$overs[bowl_position] +

innings_data$bowling$scorecard$balls[bowl_position]))

## Update the batsman/bowler objects in the innings data

innings_data$batting$batsmen[[innings_data$batting$striker]] <- batsman

innings_data$bowling$bowler <- bowler

## Update the list of bowlers

innings_data$bowling$players[[bowler$name]] <- bowler

## Did batsmen rotate strike?

if(isTRUE(rotate_strike))

swap(innings_data$batting$striker, innings_data$batting$non_striker)

## Output

if(isTRUE(ball_output))

{

output_ball(batsman = innings_data$batting$batsmen[[innings_data$batting$striker]],

bowler = innings_data$bowling$bowler,

runs_scored = ball$event$runs,

boundary4 = boundary4, boundary6 = boundary6,

wicket = wicket, wicket_type = wicket_type,

extras_scored = ball$event$extra_runs,

extra_type1 = ball$event$extra_type1,

extra_type2 = ball$event$extra_type2)

}

## Return the updated innings data

return(list(event = ball$event, innings_data = innings_data))

}
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output ball — a function that prints the result of the sim ball function to screen.

## A function that summarises the results of a delivery

output_ball <- function(batsman, bowler,

runs_scored, boundary4, boundary6,

wicket, wicket_type,

extras_scored, extra_type1, extra_type2)

{

## Output the result of the delivery

cat(bowler$name, " to ", batsman$name, ". ", sep = "")

## Number of euns scored

if(runs_scored == 1)

{

cat(runs_scored, " run", sep = "")

}else{

cat(runs_scored, " runs", sep = "")

}

## Extra runs scored

if(extras_scored == 0)

{

cat(". ")

}else{

if(extra_type2 == "")

{

cat(" + ", extras_scored, " ", extra_type1, sep = "")

}else{

cat(" + ", extras_scored, " ", extra_type1, " & ", extra_type2, sep = "")

}

}

## Wicket

if(isTRUE(wicket))

cat("OUT, ", wicket_type, ".", sep = "")

## End line

cat("\n")

}
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sim event — a function that simulates the sub-event that occurs in the sim ball function.

## A function that simulates the event that occurs on a given ball

sim_event <- function(summary_data, batsman, bowler)

{

## Get the event summary information for the given ball

event_summary <- event_probability(summary_data, batsman, bowler)

## no wicket/bowler wicket/non-bowler wicket

event <- sample(event_summary$prob_events$event, size = 1,

prob = event_summary$prob_events$prob)

## Compute the relevant sub-event

sub_event_index <- sample(1:length(event_summary[[event]][ , 1]), size = 1,

prob = event_summary[[event]]$prob)

sub_event <- event_summary[[event]][sub_event_index, ]

## Create a data.frame containining all relevant main event and sub-event

## information pertaining to the ball

event_output <- cbind(sub_event[ , c("runs", "wicket_type", "extra_runs",

"extra_type1", "extra_type2",

"legal_delivery", "rotate_strike")],

"bat_ability" = event_summary$bat_ability,

"bowl_ability" = event_summary$bowl_ability)

## Output the relevant quantities (runs, wicket, wicket type, extra, etc.)

return(list(event = event_output,

wicket_prob = event_summary$bowler_wicket_prob +

event_summary$non_bowler_wicket_prob,

bowler_wicket_prob = event_summary$bowler_wicket_prob,

bat_ability = event_summary$bat_ability,

bowl_ability = event_summary$bowl_ability,

expected_rspb = event_summary$expected_rspb,

expected_rcpb = event_summary$expected_rcpb))

}
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event probability — a function that computes the probability of each main event and

sub-event occurring in the sim event and sim ball functions, given the specific bowler/batsman

matchup.

## A function that computes the probability of each main event and sub-event

## occurring on any given delivery adjusted for the batsman/bowler matchup

event_probability <- function(summary_data, batsman, bowler)

{

## Extract the batsman’s ability given the score and innings #

## Effective batting average mu(x)

if(batsman$runs_scored > 400)

{

bat_ability <- batsman$mux[401]

}else{

bat_ability <- batsman$mux[batsman$runs_scored + 1]

}

## Compute the bowler’s ability given the innings #

bowl_ability <- bowler$bowl_ability

## Compute the expected bowling average for the batsman/bowler matchup

expected_bowl_average <- bowl_ability * bat_ability

## Compute the relative bowling economy and batsman strike rates

relative_bowling_er <- bowler$economy_rate / summary_data$averages$bowling_economy_rate

relative_batting_sr <- batsman$strike_rate / summary_data$averages$batting_strike_rate

## Compute the expected runs scored/conceded per ball

## Assume the number of wides/no balls conceded remains constant regardless

## of bowler ability

expected_rcpb <- summary_data$averages$bowling_economy_rate *

relative_bowling_er * relative_batting_sr

expected_rspb <- expected_rcpb -

(summary_data$averages$runs_conceded_per_ball -

summary_data$averages$runs_scored_per_ball)

## Relative runs scored/conceded per ball compared with the historic

## Test average

relative_rcpb <- relative_bowling_er * relative_batting_sr

relative_rspb <- expected_rspb / summary_data$averages$runs_scored_per_ball

## Compute the bowler’s expected strike rate

expected_bowler_sr <- expected_bowl_average / expected_rcpb

relative_bowler_sr <- expected_bowler_sr / summary_data$averages$bowling_strike_rate
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## The expected bowler strike rate is therefore inverse of the updated

## bowler-credited wicket probability

## The next step is to adjust the run scoring events to ensure the batsman

## scores runs and the bowler takes wickets at the appropriate rate

## Initialise the probability of a bowler wicket using the

## historical Test average

bowler_wicket_prob <- subset(summary_data$prob_events$events,

event == "bowler_wicket")$prob

## Convert probabilities into odds

bowler_wicket_odds <- bowler_wicket_prob / (1 - bowler_wicket_prob)

## Adjust odds using the relative estimates

adjusted_wicket_odds <- bowler_wicket_odds * (1 / relative_bowler_sr)

## Convert bowler wicket odds back to probability

adjusted_wicket_prob <- adjusted_wicket_odds / (1 + adjusted_wicket_odds)

## Normalise the event probabilities using the adjusted wicket probability

## The probability of a non-bowler credited wicket should remain constant,

## regardless of the batsmen at the crease

## The only thing we want to change is the probability of a bowler-credited

## wicket, or no wicket occurring

prob_events <- summary_data$prob_event$events

non_bowler_wicket_prob <- subset(prob_events,

event == "non_bowler_wicket")$prob

subset(prob_events, event == "bowler_wicket")$prob <- adjusted_wicket_prob

subset(prob_events, event == "no_wicket")$prob <- 1 - adjusted_wicket_prob -

non_bowler_wicket_prob

no_wicket_prob <- subset(prob_events, event == "no_wicket")$prob

## Default sub-event probabilities

no_wicket <- summary_data$prob_events$no_wicket

run_scoring <- subset(no_wicket, runs > 0)

bowler_wicket <- summary_data$prob_events$bowler_wicket

non_bowler_wicket <- summary_data$prob_events$non_bowler_wicket

## Without adjustment, there are this many runs conceded per ball

current_rspb <- sum(prob_events$prob[1] * run_scoring$runs * run_scoring$prob) +

sum(prob_events$prob[3] * non_bowler_wicket$runs * non_bowler_wicket$prob)
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## After adjusting the wicket probabilities, we also need to adjust the runs

## scored on run scoring deliveries by computing the adjustment factor

## Assume rate of no balls/wides is the same regardless of bowler

adjustment_factor <- expected_rspb / current_rspb

## Adjust run scoring probabilities using the adjustment factor.

## This accounts for batting strike rate and bowling economy rate

subset(no_wicket, runs > 0)$prob <- adjustment_factor * subset(no_wicket, runs > 0)$prob

## Normalise by adjusting the non-run scoring probability

## In rare instances where the batsman’s ability is super low, this can lead

## to negative probabilities

## In such cases, simply make the probability of a non-run scoring event = 0

## This will lead to cases where expected_rspb != adjusted_rspb but such cases

## are so rare that this should not make any practical difference

if(sum(no_wicket[no_wicket$runs > 0, ]$prob) > 1)

{

## Set probability of all non-scoring events to 0

no_wicket[no_wicket$runs == 0, ]$prob <- 0

## Normalise the probabilities

no_wicket$prob <- no_wicket$prob / sum(no_wicket$prob)

}else{

## Normalise by adjusting the non-run scoring probability as usual

susbet(no_wicket, runs == 0)$prob <-

subset(no_wicket, runs == 0)$prob /

sum(subset(no_wicket, runs == 0)$prob *

(1 - sum(subset(no_wicket, runs > 0)$prob))

}

## Expected runs scored per ball after adjustment

adjusted_expected_rspb <- sum(no_wicket$runs * no_wicket$prob * no_wicket_prob) +

sum(non_bowler_wicket$runs *

non_bowler_wicket$prob *

non_bowler_wicket_prob)

## Expected runs conceded per ball after adjustment

adjusted_expected_rcpb <- adjusted_expected_rspb +

sum(subset(no_wicket, extra_type1 == "noballs")$prob * no_wicket_prob) +

sum(subset(no_wicket, extra_type1 == "wides")$prob *

subset(no_wicket, extra_type1 == "wides")$extra_runs * no_wicket_prob)
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## Return a list of data.frames containing the main event and sub-event

## probabilities, adjusted for the batsman/bowler matchup

return(list(prob_events = prob_events,

no_wicket = no_wicket,

bowler_wicket = bowler_wicket,

non_bowler_wicket = non_bowler_wicket,

bowler_wicket_prob = adjusted_wicket_prob,

non_bowler_wicket_prob = non_bowler_wicket_prob,

bat_ability = bat_ability,

bowl_ability = bowl_ability,

expected_rspb = adjusted_expected_rspb,

expected_rcpb = adjusted_expected_rcpb))

}


